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Abstract

Following the line of reasoning of Utiyama in his classic paper [1], a brief and systematic study of the local non-abelian
gauge principle in field theories is given.

1 Global Invariance

Let G be a non-Abelian Lie group with n-dimensional Lie algebra Lgn

[Xa, Xb] = CabcX
c, a = 1, 2, · · · , n, (1.1)

where Cabc = −Cbac are the structure constants which satisfy the Jacobi identities

Cacd C
bd
e + Cbad C

cd
e + Ccbd C

ad
e = 0.

Consider a theory L̂(ϕi(x), ∂µϕi(x)) with matter fields,ϕi(x) carrying r-dimensional representation ρ(X) of the
Lie algebra

δϕi(x) = ρ(X)ϕi(x) = εa(T a)ij ϕj(x), i = 1, 2, · · · , r , (1.2)

where εa are the infinitesimal constant parameters of the Lie group G, and T a, is a r× r matrix representation
of Lgn: [T a, T b]ij = CabcT

c
ij . From Eq(2) it follows that ∂µϕi transforms covariantly (i.e., by the same

representation matrices ρ of the field ϕi) under G,

δ (∂µϕi(x)) = ∂µ (δϕi(x)) = εa(T a)ij ∂µϕj(x). (1.3)

The Lagrangian, therefore, transforms according to

δL̂ =
∂L̂
∂φi

εa(T a)ij ϕj +
∂L̂

∂ (∂µϕi)
εa(T a)ij ∂µϕj . (1.4)

Thus, the necessary and sufficient conditions for L̂ to be invariant, δL̂ = 0, under an arbitrary compact group
of global internal transformations, are given by the following n identities,

Ga(ϕ)
.
=

∂L̂
∂ϕi

(T a)ij ϕj +
∂L̂

∂ (∂µϕi)
(T a)ij ∂µϕj = 0. (1.5)
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Using the definition of the Euler derivative

δL̂
δϕi

.
=

∂L̂
∂ϕi
− ∂µ

(
∂L̂

∂ (∂µϕi)

)
, (1.6)

we can rewrite the condition of global invariance Eq(1.5) in the form

Ga(ϕ) =
δL̂
δϕi

(T a)ij ϕj + ∂µ

(
∂L̂

∂ (∂µϕi)
(T a)ij ϕj

)
= 0. (1.7)

This identity is called the Noether identity. If the fields satisfy the Euler-Lagrange equations

δL̂
δϕi(x)

= 0, (1.8)

then it follows, from Noether identity Eq(1.7), that the current, defined by

Jaµ(x)
.
=

∂L̂
∂ (∂µϕi)

(T a)ij ϕj(x), (1.9)

is conserved.

2 The Noether Charge and its Properties

For convenience let us define the functional

Q[σ] =

ˆ
σ

dσµ(x) Jµ(x). (2.1)

where σ denotes a space-like hypersurface in R(1,3), and dσµ(x), is a n-vector differential at x. The functional

derivative at some point x is defined by

δQ[σ]

δσ(x)

.
= lim
ω(x)→0

Q[σ̄]−Q[σ]

ω(x)
, (2.2)

where ω(x) is the volume enclosed between σ̄ and σ. Therefore, according to Gauss’ theorem, we find

δQ[σ]

δσ(x)
= ∂µJµ. (2.3)

Now, if Jµ(x) is conserved, then δQ/δσ = 0 and therefore Q[σ] is independent of σ. This means that we are

free to choose a particular σ = x0 = t = const. hyperplane to evaluate Q;

Q(t) =

ˆ
d3xJ0(t, ~x).
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Clearly, this integral is time-independent iff the conserved vector field satisfies the boundary condition

|~x|2Ji(x)→ 0, as |~x| → ∞. (2.4)

Indeed,

dQ/dt =

ˆ
d3x ∂0J0 = −

ˆ
d3x ∂iJi = −

˛
d~S · ~J = 0.

Next, we define, for some function F (x), the functional

Rµν [σ]
.
=

ˆ
σ

dσµ(x) ∂νF (x). (2.5)

Taking the functional derivative, we find

δRµν [σ]

δσ(x)
= ∂µ(∂νF ) = ∂ν(∂µF ) =

δRνµ[σ]

δσ(x)
.

Thus, (Rµν [σ]−Rνµ[σ]) is independent of σ, i.e.,

δ

δσ(x)
(Rµν [σ]−Rνµ[σ]) = 0. (2.6)

Again, we are allowed to choose the hyperplane σ = t = const. If we take, for example, µ = 0, and ν = j, we get

R0j −Rj0 =

ˆ
d3x ∂jF (x)− 0 =

ˆ
d3x ∂jF (x).

For µ = ν = 0, and for µ = i, ν = j, we have the following trivial results

R00 −R00 =

(ˆ
d3x ∂0F (x)−

ˆ
d3x ∂0F (x)

)
= 0,

Rij −Rji = 0− 0 = 0.

Thus, if the function F (x) satisfies the boundary condition

|~x|2 F (x)→ 0 as |~x| → ∞,

the following (very useful) identity [2] is satisfied for all values of µ and ν,

ˆ
σ

dσµ(x) ∂νF (x) =

ˆ
σ

dσν(x) ∂µF (x). (2.7)
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Now, the action of the translation generator Pµ on any local field Jµ(x) is given by

δµJν(x) = [iPµ, Jν(x)] = ∂µJν(x). (2.8)

Integrating this equation we find by virtue of Eq(2.7), and assuming |~x|2Jj → 0 as |~x| → ∞, that

[iPµ,

ˆ
dσν Jν(x)] =

ˆ
dσν ∂µJν(x) =

ˆ
dσµ ∂νJν .

Thus, for a conserved vector field, ∂µJµ = 0, we find

[iPµ, Q] = 0.

That is, the integral over all space of the time component of a conserved vector, i.e., the Noether charge

Q
.
=
´
d3xJ0(x), is translationally invariant.

Under Lorentz transformation, exp(iωµνM
µν/2), a vector field Jµ(x) transforms according to

δµνJρ(x) = [iMµν , Jρ(x)] = ∂ν (xµ Jρ)− ∂µ (xν Jρ) + δµρ J
ν − δνρ Jµ. (2.9)

Operating on this equation with
´
dσρ, and writing Q =

´
dσρ Jρ(x), we find

[iMµν , Q] =

ˆ
dσρ ∂[ν

(
xµ] Jρ

)
+

ˆ
dσ[µ Jν], (2.10)

where

∂[ν
(
xµ] Jρ

)
.
= ∂ν (xµ Jρ)− ∂µ (xν Jρ) ,

and ˆ
dσ[µ Jν]

.
=

ˆ
dσµ Jν(x)−

ˆ
dσν Jµ(x) .

If the vector field satisfies the boundary conditions

|~x|2 xµ Jν → 0, as |~x| → ∞,

we can use the identity Eq(2.7) to show that the following identity holds
ˆ
dσρ ∂[ν

(
xµ] Jρ

)
=

ˆ
dσ[ν xµ] ∂ρJρ +

ˆ
dσ[ν Jµ]. (2.11)

Inserting this in Eq(2.10), leads to

[iMµν , Q] =

ˆ
dσ[ν xµ] ∂ρJρ. (2.12)

Thus the charge Q is Lorentz invariant, i.e., [iMµν , Q] = 0, if the conserved Noether current Jµ(x) satisfies the

above-mentioned boundary conditions. Thus, we have completed the proof the following theorem.
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Theorem. If the vector fields Jaµ are conserved and well-behaved at spatial infinity, then the associated charges,
defined by the integrals

Qa =

ˆ
d3xJa0 (x), (2.13)

are Poincare-invariant and time-independent scalars.

Using the definition of the conjugate momentum

πi(x)
.
=

∂L̂
∂ (∂0ϕi)

,

the Noether charge becomes

Qa =

ˆ
d3xπi(x)T aij ϕj(x).

Owing to the equal-time commutation relations

[ϕi(t, ~x), πj(t, ~y) = iδij δ
3(~x− ~y),

[ϕi(t, ~x), ϕj(t, ~y)] = [πi(t, ~x), πj(t, ~y)] = 0 ,

and the algebra of the matrices T a, it is easy to see that the charges Qa generate the correct transformation on
the field variables,

δϕi(x) = [εaQ
a(t), ϕi(x)], (2.14)

and form a representation of Lgn,
[Qa(t), Qb(t)] = CabcQ

c(t). (2.15)

The remarkable fact about Eq(2.14) and Eq(2.15) is that they are true even if G is not a symmetry group,
i.e., the charges Qa satisfy the Lie algebra of G and generate the proper transformation on the fields regardless
whether or not the currents Jaµ(x) are conserved.

3 Local Gauge Invariance

Let us now assign an independent group element g(ε) ∈ G for each spacetime point xµ, i.e., suppose now that
the parameters of the group are arbitrary functions of the coordinate εa(x). The fields then transform according
to

δϕi(x) = (T a)ij εa(x)ϕj(x). (3.1)

The group of such transformations is called the local or gauge group. From Eq(3.1) it follows that the derivative
of the field does not transform covariantly,

δ (∂µϕi(x)) = (T a)ij εa(x) ∂µϕj(x) + (T a)ij ϕj(x) ∂µεa(x). (3.2)

This equation implies that our globally invariant Lagrangian, L̂(ϕ, ∂ϕ), is no longer invariant under the group, G(x),
of local transformations Eq(3.1). Indeed, we get for the change in the Lagrangian,

δL̂ =
∂L̂
∂ϕi

δϕi(x) +
∂L̂

∂ (∂µϕi)
δ (∂µϕi(x)) = Ga εa(x) +

∂L̂
∂ (∂µϕi(x))

(T a)ij ϕj(x) ∂µεa(x). (3.3)
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Therefore, the conditions of global invariance, Eq(1.5), imply that the variation of L̂ does not vanish for non-
constant εa(x),

δL̂(x) =
∂L̂

∂ (∂µϕi)
(T a)ij ϕj ∂µεa(x). (3.4)

This means that our matter field theory, L̂(ϕ, ∂ϕ), is not invariant under the local group, G(x), of transforma-
tions Eq(3.1). To obtain an invariant Lagrangian, it is necessary to enlarge the original (globally invariant)
theory, L̂(ϕ, ∂ϕ),by introducing a new field

AJ(x), J = 1, 2, · · · ,m, (3.5)

in such a way that the right-hand side of Eq(3.4) can be cancelled with the contribution from this new field
AJ(x). The compensating fields thus introduced are called gauge fields.

Now suppose that the new Lagrangian L̄(x) depends only on the fields AJ(x) and not on their derivatives,

L̄(x) = L̄(ϕi, ∂µϕi, AJ), (3.6)

L̄(ϕi, ∂µϕi, 0) ≡ L̂(ϕi, ∂µϕi),

and consider the following inhomogeneous infinitesimal transformations

δAJ(x) = FKaJ AK(x)εa(x) +GaµJ ∂
µεa(x), (3.7)

where F and G are some unknown constants to be determined later. The second (inhomogeneous) term in
Eq(3.7) has been introduced to cancel the right-hand side of Eq(3.4).

Now, the assumed invariance of L̄(ϕ, ∂ϕ,A) under the local gauge group G(x) reads

δL̄ =
∂L̄
∂ϕi

δϕi +
∂L̄

∂ (∂µϕi)
δ (∂µϕi) +

∂L̄
∂AJ

δAJ(x) = 0. (3.8)

Inserting Eq(3.1), Eq(3.2) and Eq(3.7) in Eq(3.8) we get(
∂L̄
∂ϕi

T aij ϕj +
∂L̄

∂ (∂µϕi)
T aij ∂µϕj +

∂L̄
∂AJ

FKaJ AK(x)

)
εa(x) +

(
∂L̄

∂ (∂µϕi)
T aij ϕj +

∂L̄
∂AJ

GaµJ

)
∂µεa(x) = 0.

(3.9)
Owing to the arbitrariness of the functions εa(x), the left-hand side of Eq(3.9) vanishes if and only if each
coefficient of εa and ∂µεa vanishes identically:

∂L̄
∂ϕi

T aij ϕj +
∂L̄

∂ (∂µϕi)
T aij ∂µϕj +

∂L̄
∂AJ

FKaJ AK(x) = 0, (3.10)

∂L̄
∂ (∂µϕi)

T aij ϕj +
∂L̄
∂AJ

GaµJ = 0. (3.11)

What we are after next is to reveal the meaning of the index J carried by the field AJ(x) and determine the
explicit AJ -dependence of L̄. In order to determine that AJ -dependence uniquely, the number of equations
Eq(3.11) has to equal the number (m) of the fields AJ

m = dim
(
R(1,3)

)
× dim (Lgn) = 4n.
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Also, the 4n× 4n matrix GaµJ must be non-singular with inverse matrix given by

(
G−1

)µK
a

GaµJ = δKJ ;
(
G−1

)µJ
b

GaνJ = δµν δ
a
b . (3.12)

We can use this to redefine the gauge field by

Bµa (x) =
(
G−1

)µJ
a

AJ(x) ; AJ(x) = GaµJ B
µ
a (x). (3.13)

In terms of the field Bµa the gauge transformation Eq(3.7) becomes

δBµc (x) =
(
Cabc

)µ
ν
Bνb (x) εa(x) + ∂µεc(x), (3.14)

where (
Cabc

)µ
ν

.
=
(
G−1

)µJ
c

FKaJ GbνK . (3.15)

For constant εa, therefore, the gauge fields transform according to

δBµc (x) =
(
Cabc

)µ
ν
εaB

ν
b (x). (3.16)

Therefore, for non vanishing (Cabc)µν , the gauge fields contribute to the Noether currents of the global symmetry
group G and carry the corresponding charges. Thus, the gauge fields of the non-Abelian group G are self-
interacting (charged) fields. Before continuing the field theoretical study, let us see what we can learn from
the index structure of Bµa (x) and its transformation law Eq(3.14). Since Bµa carries single space-time index,
therefore its field quanta are spin-1 vector bosons. The group index carried by Bµa (x), means that the gauge
fields take values in the Lie algebra Lgn, i.e., the theory contains as many gauge fields as there are generators.
Thus, from Lie algebra point of view, the field Bµa transforms by the adjoint map

ad(X)bc = Cabc εa,

where εa are the constant parameters of the group. Cabc = (Xa)bc are the matrix elements of the generators
in the adjoint representation.The fact that the structure constants form a representation of Lgn, can be easily
seen from their Jacobi identities. Thus

δBµc (x) = ad(X)bcB
µ
b (x) = Cabc εaB

µ
b (x). (3.17)

Comparing this with Eq(3.16) we conclude that the numbers (Cabc)µν are related to the structure constants of
the group G by (

Cabc
)µ
ν

= Cabc δ
µ
ν . (3.18)

Using this result, the transformation law of the gauge field becomes

δBµc (x) = CabcB
µ
b (x) εa(x) + ∂µεc(x). (3.19)

This implies that the gauge bosons must be massless, i.e., Lagrangians with mass term MacBµaB
µ
c are ruled

out.

Using Eq(10) and Eq(28), it is easy to show that the combination

Dµϕi
.
= ∂µϕi − T aij Bµa ϕj , (3.20)
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transforms by the representation matrices ρ(Xa) = T a of the matter fields ϕi, i.e., it is a covariant object,

δ (Dµϕi) = T aij εa(x)Dµϕj . (3.21)

We will re-derive these results (Eq(3.18), Eq(3.19) and Eq(3.21)) by field theoretical considerations using
Eq(3.10). So let us go back to field theory and rewrite Eq(3.11) in terms of the gauge field Bµa (x). Using
the relations Eq(3.13) and Eq(3.12), Eq(3.11) becomes

∂L̄
∂ (∂µϕi)

T aij ϕj(x) +
∂L̄
∂Bµa

= 0. (3.22)

From this, Eq(3.22), we conclude that the gauge fields are contained in L̄ only through the combination,
Eq(3.20),

Dµϕi(x)
.
= ∂µϕi − T aij Bµa ϕj ,

which is called the covariant derivative (the name will be justified below). Thus, a gauge invariant Lagrangian
should have the form

L̄(ϕi, ∂µϕi, AJ) = L(ϕi,Dµϕi) ≡ L̂(ϕi,Dµϕi). (3.23)

Therefore, the following relations must hold

∂L̄
∂ϕi

=
∂L
∂ϕi
− ∂L
∂ (Dµϕj)

T ajiB
µ
a , (3.24)

∂L̄
∂ (∂µϕi)

=
∂L

∂ (Dµϕi)
, (3.25)

∂L̄
∂AJ

= − ∂L
∂ (Dµϕi)

T aij ϕj (G−1)µJa . (3.26)

Thus, a gauge invariant theory, L(ϕ,Dµϕ), can be obtained from a globally invariant matter field theory,
L̂(ϕ, ∂µϕ), by replacing the ordinary derivative ∂µϕ with the covariant derivative Dµϕ. The second term in
the covariant determines the coupling (interaction) between the matter fields ϕi(x) and the Lie algebra valued
gauge fields Bµa (x).Indeed, by expanding L(ϕ,Dµϕ) to first order in the coupling, we find

L(ϕi,Dµϕi) = L̂(ϕi, ∂
µϕi)−

∂L̂
∂ (∂µϕi)

T aij ϕj B
µ
a ,

or, using Eq(9),
L(ϕi,Dµϕi) = L̂(ϕi, ∂

µϕi)− Jaµ(x)Bµa (x). (3.27)

Thus, the gauge fields couple to matter fields through the Noether currents of the global symmetry of the free
matter field Lagrangian L̂(ϕ, ∂ϕ). And L(ϕ,Dϕ) is made up of the free matter Lagrangian L̂(ϕ, ∂ϕ) and the
interaction Lagrangian for the matter fields with the gauge fields Bµa (x),

Lint(x) = −Jaµ(x)Bµa (x). (3.28)

Notice that the matter field’s current can now be calculated from

∂

∂Bµa
L(ϕi,Dνϕi) = −Jaµ(x) = − ∂L

∂ (∂µϕi)
T aij ϕj . (3.29)

This means that the matter current Jaµ is no longer conserved in usual sense. Instead, it satisfies a covariant
conservation law which follows as a direct consequence of the invariance of L(ϕ,Dϕ) under the global transfor-
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mations

δϕi(x) = T aij εa ϕj(x), (3.30)

δBµc (x) = Cabc εaB
µ
b (x). (3.31)

Indeed, the invariance of L implies

0 =
δL
δϕi

δϕi + εa ∂
µ

(
∂L

∂ (∂µϕi)
T aij ϕj

)
+ εa C

ab
cB

µ
b (x)

∂L
∂Bµc

.

Using Eq(3.29), we arrive at the Noether identity for the Lagrangian L(ϕ,Dϕ) :

δL
δϕi

δϕi + εa∇µJaµ(x) = 0, (3.32)

where ∇µ,
∇µJaµ = ∂µJaµ − CabcB

µ
b J

c
µ, (3.33)

is the covariant derivative in the adjoint representation. Thus, when the field equations are satisfied, Noether
identity implies that the matter current is covariantly conserved,

∇µJaµ = 0.

Next, we (as promised earlier) will use Eq(3.10) to show the covariant nature of the covariant derivative,
Eq(3.21), and determine the unknown constants (Cabc)µν in the transformation law of the gauge field Eq(3.14).
For that, let us examine Eq(3.10) term by term. From Eq(3.24), we can rewrite the first term in Eq(3.10)(after
changing the dummy indices) as

∂L̄
∂ϕi

T aikϕk =
∂L
∂ϕi

T aik ϕk −
∂L

∂ (Dµϕi)
Bµb (x)ϕj T

b
ik T

a
kj . (3.34)

From Eq(3.25), we find (after introducing the covariant derivative) for the second term of Eq(3.10),

∂L̄
∂ (∂µϕi)

T aik ∂
µϕk =

∂L
∂ (Dµϕi)

T aik Dµϕk +
∂L

∂ (Dµϕi)
Bµb (x)ϕj T

a
ik T

b
kj . (3.35)

Adding Eq(38) to Eq(39) and using the Lie algebra relation

T aik T
b
kj − T bik T akj = [T a, T b]ij = Cabc T

c
ij , (3.36)

we find

∂L̄
∂ϕi

T aij ϕj +
∂L̄

∂ (∂µϕi)
T aij ∂

µϕ =
∂L
∂ϕi

T aij ϕj +
∂L

∂ (Dµϕi)
T aij Dµϕj +

∂L
∂ (Dµϕi)

ϕj B
ν
b δ

µ
ν C

ab
c T

c
ij . (3.37)

And finally we use Eq(3.26) to rewrite the third term in Eq(3.10) as

∂L̄
∂AJ

FKaJ AK = − ∂L
∂ (Dµϕi)

T cij ϕj
(
G−1

)µJ
c

FKaJ GbνK B
ν
b = − ∂L

∂ (Dµϕi)
ϕj B

ν
b

(
Cabc

)µ
ν
T cij , (3.38)

where the definition Eq(3.15) has been used. Substituting Eq(3.37) and Eq(3.38) in the identity Eq(3.10), we
find

∂L
∂ϕi

T aij ϕj +
∂L

∂ (Dµϕi)
T aij Dµϕj =

∂L
∂ (Dµϕi)

T cij ϕj B
ν
b

((
Cabc

)µ
ν
− δµν Cabc

)
. (3.39)
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Thus, local gauge invariance demands that both sides of Eq(3.39) vanish identically. Indeed, the gauge invariance
condition for L(ϕi,Dµϕi) reads

δL =
∂L
∂ϕi

T aij ϕj εa(x) +
∂L

∂ (Dµϕi)
δ (Dµϕi) = 0. (3.40)

By contracting Eq(3.39) with εa(x) and subtracting the result from Eq(3.40) we find

δ (Dµϕi)− T aij εa(x) (Dµϕj) = T cij εa(x)ϕj B
ν
b

((
Cabc

)µ
ν
− δµν Cabc

)
. (3.41)

Thus, the local gauge invariance of L can be stated as{(
Cabc

)µ
ν

= δµν C
ab
c

}
⇔
{
δBµc = Cabc εaB

µ
b + ∂µεc

}
⇔
{
δ (Dµϕi) = T aij εa(x) (Dµϕj)

}
. (3.42)

We have already established the left to right implications (see Eq(3.18), Eq(3.19) and Eq(3.21)). The right to
left implications can, just as easily, be proven:

δ (∂µϕi)− T aij (Bµa δϕj + δBµa ϕj) = T aij εa ∂ϕj − T aij T bjk B
µ
b ϕk εa.

Using Eq(10), Eq(3.2) and the algebra Eq(3.36), we find the transformation law of the gauge fields, Eq(3.19),
which, when compared with Eq(3.14), leads to

(
Cabc

)µ
ν

= δµν C
ab
c.

4 Completing The Dynamics

We have, up to this point, being treating the gauge field as external (non-propagating) field. indeed, we saw that
the Lagrangian L(ϕ,Dµϕ) is made up of the free Lagrangian for the matter fields, L̂(ϕ, ∂ϕ), and the interaction
Lagrangian for the matter fields with the gauge fields, Eq(3.27) and Eq(3.28),

L(ϕ,Dµϕ) = L̂(ϕ, ∂µϕ) + Lint. (4.1)

Let us now look for the possible, gauge invariant, Lagrangian for the gauge fields which depends on Bµa (x) as
well as on their derivatives. Let it be denoted by L0(Bµa , ∂

µBνa). The invariance condition for L0 with respect
to the gauge transformations Eq(3.19), reads

δL0 =
∂L0

∂Bµa
δBµa +

∂L0

∂ (∂νBµa )
δ (∂νBµa ) = 0. (4.2)

Inserting Eq(3.19) in Eq(4.2) and using the arbitrariness of the functions εa(x), ∂µεa(x), and ∂µ∂νεa(x), we
find the following identities

∂L0

∂Bµc
CabcB

µ
b +

∂L0

∂ (∂νBµe )
Cabe ∂

νBµb = 0, (4.3)

∂L0

∂Bµc
+

∂L0

∂ (∂µBνe )
CcdeB

ν
d = 0, (4.4)

∂L0

∂ (∂νBµa )
+

∂L0

∂ (∂µBνa)
= 0. (4.5)

The last identity follows from symmetrizing the product

∂L0

∂ (∂νBµa )
∂ν∂µεa =

1

2

{
∂L0

∂ (∂µBνa)
+

∂L0

∂ (∂νBµa )

}
∂µ∂νεa(x),
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and indicates that the derivative of the gauge field Bµa (x) can only enter the Lagrangian through the antisym-
metric combination

Bµνa (x)
.
= ∂µBνa − ∂νBµa . (4.6)

Substituting Eq(4.4) into the first term of Eq(4.3) and using Ccde = −Cdce, we find

∂L0

∂ (∂µBνe )

{
Cabc C

dc
eB

µ
b (x)Bνd (x) + Cabe ∂

µBνb (x)
}

= 0. (4.7)

Anti-symmetrizing the indices (µ, ν), i.e., using Eq(4.5) or, which is the same thing, introducing Bµνe into
Eq(4.7), we find

1

2

∂L0

∂Bµνe (x)

{
Cabc C

dc
eB

µ
b (x)Bνd (x)− Cabc CdceBνb (x)Bµd (x) + CabeB

µν
b (x)

}
= 0. (4.8)

Interchanging the dummy indices (b↔ d) in the second term and then using Cdac = −Cadc, we find

1

2

∂L0

∂Bµνe (x)

{
CabeB

µν
b (x) +

(
Cabc C

dc
e + Cdac C

bc
e

)
Bµb (x)Bνd (x)

}
= 0. (4.9)

Finally, using the Jacobi identity

Cabc C
dc
e + Cdac C

bc
e = −Cace Cbdc, (4.10)

we find
1

2

∂L0

∂Bµνe
Cace

{
Bµνc (x)− CbdcBµb (x)Bνd (x)

}
= 0, (4.11)

or
1

2

∂L1(Fµνc )

∂Fµνe (x)
Cace F

µν
c (x) = 0, (4.12)

where Fµνa (x) is the Lie algebra-valued tensor field

Fµνc (x) = ∂µBνc (x)− ∂νBµc (x)− CbdcBµb (x)Bνd (x), (4.13)

and
L1(Fµνa )

.
= L0(Bµa , B

µν
a ) ≡ L0(Bµa , ∂

νBµa ). (4.14)

By contracting Eq(4.12) with εa(x), and comparing it with the invariance condition for L1(F ),

δL1 =
∂L1

∂Fµνc
δFµνc = 0, (4.15)

we deduce that Fµνa transforms in the adjoint representation of Lgn

δFµνa (x) = Cbca εb(x)Fµνc (x). (4.16)

Indeed, we can, as a consistency check, obtain the same transformation law for Fµνa by substituting Eq(3.19) in

δFµνc = δ(∂µBνc )− δ(∂νBµc )− CbdcBµb δB
ν
d − Cbdc (δBµb )Bνd ,

which follows from Eq(59), and using the Jacobi identity Eq(4.10). Thus, a locally invariant Lagrangian for the
gauge fields is a function of the tensor Fµνa only and satisfies condition Eq(4.15). The choice of L1(F ) satisfying
Eq(4.15) is not unique. The simplest Lorentz invariant and parity conserving Lagrangian, quadratic in Fµνa ,
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has the form
L1(F ) = −1

4
gab ηµρ ηνσ F

µν
a (x)F ρσb (x), (4.17)

with a constant non-singular matrix gab on Lgn1. In order to have a real Lagrangian, the matrix gab must be
real. Since

∂L1

∂Fµνa
= −1

4

(
gab + gba

)
ηµρ ηνσ F

ρσ
b ,

we may take gab to be symmetric matrix. Inserting Eq(4.17) in the gauge invariance condition, Eq(4.15), we
find

gbc Cadc = −gdc Cabc. (4.18)

Clearly, this is a condition on the allowed Lgn. Indeed, if gab acts as a raising operator for the indices on the
structure constants,

Cabc = gcd Cabd, (4.19)

then the condition Eq(4.18) shows that the structure constants are antisymmetric in all three indices a, b and
d,

Cabd = −Cadb. (4.20)

This implies that Lgn is a compact Lie algebra. With the aid of the Jacobi identity Eq(4.10), we can show that
the Cartan metric, defined by

gab
.
= −Tr

{
ad(Xa) ad(Xb)

}
= −Cacd Cbdc, (4.21)

satisfies the gauge group condition Eq(4.18). Then, a Lie algebra is said to be compact if the Cartan metric
gab is positive-definite: since the finite-dimensional representations of compact Lie algebras are all Hermitian,
T a = iXa, the Cartan metric gab = Tr(T aT b) is positive-definite as a bilinear form, because gabεaεb = Tr(T · ε)2

is positive for any real εa. Below, the compact nature of Lgn will be deduced on physical ground.

Now, if we rewrite the kinetic quadratic part,

−1

4
gab (∂µBνa − ∂νBµa ) (∂µBνb − ∂νBµb) ,

of the first term in Eq(4.17) as

+
1

2
gab ∂µBia ∂µB

i
b −

1

2
gab ∂µB0

a ∂µB
0
b +

1

2
gab ∂µBνa ∂νBµb,

we see that the signature of the matrix gab(i.e., the signs of its eigenvalues) is related directly with the signs of
(quantum) state-space metric of (transverse) gauge bosons Bµa . If gab has both positive and negative eigenvalues,
it would be almost impossible to eliminate the contributions from negative norm states. Therefore, unless all
modes in Bµa are unphysical simultaneously, the Cartan metric must be of definite sign (in our case, positive
definite) as a bilinear form. This implies that our gauge group G should be compact. Then, we can diagonalize
and normalize the metric into the form

gab = δab.

With respect to this basis, we need not distinguish the upper and lower indices in the structure constants, and
the gauge group restriction Eq(4.18) shows that Cabc is totally antisymmetric.

Cabc = −Cacb = Cabc (4.22)
1 To be precise, Eq(4.17) with non-singular matrix gab defines a correct Lagrangian only for the case with G being a semi-simple

Lie group: Since gab is zero on any Abelian invariant subalgebra, Eq(4.17) does not reproduce the kinetic terms for Abelian
components which appear in the case of non-semi-simple Lgn.
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Thus, the specific form, Eq(4.17), of L1(F ), which imposes the restriction Eq(4.18) on the allowed gauge group
G, together with the existence of physical modes in Bµa restrict G to be compact. When the gauge group is
compact, the invariant Lagrangian for the gauge fields is called Yang-Mills Lagrangian [3],

LYM = −1

4
F aµν F

µν
a , where (4.23)

F aµν = ∂µB
a
ν − ∂νBaµ − CabcBbµBcν , (4.24)

is the Yang-Mills Field tensor. The Yang-Mills Lagrangian contains, beside the quadratic terms, the cubic and
the quartic terms in the gauge fields Baµ, i.e., the Yang-Mills field is self-interacting. The total Lagrangian of
the system of the matter fields ϕi(x) and of the gauge fields Bµa (x) will be given by the sum of the original
matter field Lagrangian L̂(ϕ, ∂ϕ), the interaction Lagrangian between the matter and the gauge fields Eq (3.28)
and the Yang-Mills Lagrangian,

L(ϕi, ∂ϕi, B
a
µ, ∂B

a
µ) = L̂(ϕi, ∂ϕi)− Jaµ(x)Bµa (x)− 1

4
F aµν F

µν
a ≡ L̂(ϕi,Dµϕi)−

1

4
F aµν F

aµν , (4.25)

with Jaµ(x), given by Eq(1.9), being the matter field’s current of the global symmetry of L̂(ϕ, ∂ϕ).

5 Conserved Currents; First and Second Noether Theorems

In this section, we will state and prove the two theorems of Noether in the case of the theory L(ϕ, ∂ϕ,Baµ, ∂B
a
µ).

Theorem 1. The Lagrangian density L(ϕ, ∂ϕ,Bµa , ∂B
µ
a ) is invariant under the following infinitesimal trans-

formations

δϕi(x)
.
= εaδ

aϕi(x) = T aij εa ϕj(x), (5.1)

δBµc (x)
.
= εaδ

aBµc (x) = Cabc εaB
µ
b (x), (5.2)

with arbitrary constant parameters εa, if and only if the following (Noether) identity holds

δL
δΦA

δaΦA + ∂µJ aµ (x) = 0, (5.3)

where
J aµ (x)

.
=

∂L
∂ (∂µϕi)

T aij ϕj(x) +
∂L

∂ (∂µBνc )
CabcB

ν
b (x), (5.4)

δL
δΦA

δaΦA
.
=

δL
δϕi

δaϕi +
δL
δBµc

δaBµc . (5.5)

Proof. The infinitesimal global transformations above induce the following change in the Lagrangian

εa δ
aL = εa

∂L
∂ϕi

δaϕi + εa
∂L

∂ (∂µϕi)
∂µ(δaϕi) + εa

∂L
∂Bνc

δaBνc + εa
∂L

∂ (∂µBνc )
∂µ(δaBνc ).

After introducing the Euler derivatives for the fields ΦA = {ϕi, Bµc }, and owing to the arbitrariness of the
constant parameters εa, the above equation becomes

δaL =
δL
δΦA

δaΦA + ∂µ
(

∂L
∂ (∂µϕi)

T aij ϕj(x) +
∂L

∂ (∂µBνc )
CabcB

ν
b (x)

)
. (5.6)

Thus δaL = 0 if and only if the right-hand side of Eq(5.6) vanishes identically (i.e., irrespective of whether or
not ΦA ’s are solutions of the field equations).
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When the field equations are satisfied,
δL
δΦA

= 0,

Noether identity Eq(5.3) shows that the global symmetry current J aµ is conserved. Using the Yang-Mills La-
grangian Eq(4.23) and the definition Eq(1.9) of the matter current, we can rewrite the current J aµ of the global
symmetry of the total Lagrangian Eq(4.25) as

J aµ (x) = Jaµ(x) + CabcB
ν
b (x)F cνµ(x). (5.7)

The second term represents the Gauge fields contribution to the conserved current. Thus, for non-abelian
symmetry the charges carried by the gauge bosons are given by

qa = Cabc

ˆ
d3xF cj0(x)Bjb (x). (5.8)

Notice that, while the gauge-dependent currentJ aµ is conserved, the gauge-invariant (matter) current Jaµ is not.
We will see that the matter field current satisfies covariant conservation law.

Theorem 2. The Lagrangian L(ϕi, ∂
µϕi, B

µ
a , ∂

νBµa ) is invariant under the infinitesimal transformations

δϕi(x) = T aij εa(x)ϕj(x),

δBνc (x) = Cabc εa(x)Bνb (x) + ∂νεc(x),

with arbitrary, twice differentiable, spacetime-dependent functions εa(x), if and only if the following relations
hold identically:

δL
δΦA

δaΦA − ∂ν
(
δL
δBνa

)
= 0, (5.9)

∂νFcνµ(x) + Jcµ(x) = 0, (5.10)

Faµν(x) = −Faνµ(x). (5.11)

With Jaµ and Faµν are defined by

Jcµ(x) =
δL
δBµc

+ J cµ(x); (5.12)

J aµ (x) =
∂L

∂ (∂µϕi)
T aij ϕj +

∂L
∂ (∂µBνc )

CabcB
ν
b ,

Faµν(x) =
∂L

∂ (∂νBµa )
. (5.13)

Proof. This does not require anything other that introducing the Euler derivatives for the fields and some
reshuffling of the terms:

δL =

{
δL
δΦA

δaΦA − ∂ν
(
δL
δBνa

)
+ ∂νJaν

}
εa +

{
Jcµ + ∂νFcνµ

}
∂µεc +

1

2

{
Fcµν + Fcνµ

}
∂µ∂νεc.

Owing to the arbitrariness of functions εa(x), the change in L vanishes if and only if each coefficient of εa, ∂µεa
and ∂µ∂νεa vanishes identically. Thus the invariance of L is equivalent to the identities Eq(5.9), Eq(5.10) and
Eq(5.11).

When the matter fields satisfy the field equations δL/δϕi = 0, the identity Eq(5.9) becomes

δL
δBµc

δaBµc − ∂ν
(
δL
δBνa

)
= 0. (5.14)
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This means that the 4n quantities (δL/δBµc ) are interrelated by n equations, and hence, that the number of
independent quantities among (δL/δBµc ) is 3n in general. Owing to this constraint, the theory cannot determined
time evolution of the gauge field uniquely. The notion of quantum fields necessarily involves field operators or
their Green’s functions with some specified spacetime dependence determined by field equations. To quantize
the gauge field, therefore, it is necessary to break the local gauge invariance by some gauge fixing condition. Of
course, we encounter the same thing in the abelian gauge theory QED, however, what is new here is that the
Lagrangian, Eq(4.25), together with the gauge fixing term cannot define a meaningful quantum theory of Yang-
Mills fields with a unitary S-matrix. This is just an inevitable consequence of the non-linear self-interaction
of gauge fields due to the non-abelian nature of the theory: Unlike the abelian cases, the contributions from
the unphysical (longitudinal and scalar) modes to intermediate states do not exactly cancel out owing to the
self-coupling of Bµa . Feynmann [4] and later DeWitt [5] found, in the perturbation theory, that this violation of
unitarity can be restated as the missing contributions of a pair of massless scalar fermions to closed loops in
the Feynmann diagrams. Subsequently, a clear explanation for the appearance of these fermions with strange
statistics was given by Faddeev and Popov [6] from the viewpoint of path-integral formalism, and since then,
these “particles” have come to be called Faddeev-Popov ghosts. Understanding the origin of these ghost fields in
the operator formalism will be the subject of next set of notes.

From Eq(5.10) and Eq(5.11) it follows that the “current” Jaµ is conserved. However, this is not a new current.
For Bµa satisfying the field equations δL/δBµa = 0, the “current” Jaµdefined by Eq(5.12) becomes identical to the
conserved current J aµ associated with the global transformation of the first Noether theorem . Thus, there is
no new current associated with local gauge invariance. In the case of the Lagrangian Eq(4.25), Faµν is nothing
but the field strength F aµν . Thus, using Eq(5.7) we can rewrite Eq(5.10) as

∂νF aνµ = −Jaµ(x)− CabcBνb F cνµ, (5.15)

or, in terms of the covariant derivative ∇ν ,

∇νF aνµ = −Jaµ(x). (5.16)

From this it follows that the matter current satisfies a covariant conservation law:

∇µ∇νF aνµ = −1

2
[∇µ,∇ν ]F aµν = −∇µJaµ ,

or, because of the total antisymmetry of the structure constants,

∇µJaµ =
1

2
Cabc F bµν F cµν = 0. (5.17)

6 Conclusions

The equirement that the Lagrangian be invariant under arbitrary local group of internal symmetry Eq(3.1)
forced us to introduce new massless vector bosons transforming in the adjoint representation of the gauge group
Eq(3.19). With no extra input other than gauge invariance, we were able to determine the form of interaction
between the gauge bosons and the matter fields Eq(3.28), and show how the locally invariant Lagrangian can be
deduced from the globally invariant Lagrangian Eq(3.23). We have also seen that the form of the Lagrangian
for the gauge fields Eq(4.17) together with the existence of physical modes in Bµa (x) restricts the allowed gauge
group to be compact. And finally, we deduced, from the results of Noether second theorem Eq(5.14), that gauge
field theories are constraint systems.
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