## Statement:

For $n \geq 2$ and $0<k<n$,

$$
P(n)=P(k) P(n-k)-P(k-1) P(n-k-1)
$$

## Proof (by induction on $k$ ):

- Initial step:

Since $P(1)=x$ and $P(0)=1$, the recurrence rule for $P(n)$ can be transformed into

$$
\begin{align*}
P(n) & =x P(n-1)-P(n-2)  \tag{1}\\
& =P(1) P(n-1)-P(0) P(n-2) \tag{2}
\end{align*}
$$

which is the desired statement for $k=1$.

- Induction step:

Assume the statement true for $k=m$. Then, for $k=m+1$ (as long as $k<n$ ),

$$
\begin{align*}
P & (m+1) P(n-(m+1))-P((m+1)-1) P(n-(m+1)-1) \\
& =P(m+1) P(n-m-1)-P(m) P(n-m-2)  \tag{3}\\
& =(x P(m)-P(m-1)) P(n-m-1)-P(m) P(n-m-2)  \tag{4}\\
& =x P(m) P(n-m-1)-P(m-1) P(n-m-1)-P(m) P(n-m-2)  \tag{5}\\
& =P(m)(x P(n-m-1)-P(n-m-2))-P(m-1) P(n-m-1)  \tag{6}\\
& =P(m) P(n-m)-P(m-1) P(n-m-1)  \tag{7}\\
& =P(n) \tag{8}
\end{align*}
$$

by the induction hypothesis.

