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Abstract This paperreportson the implementatiorof an Artificial Neural Net-
work (ANN) on an Atmel AT6005 Field Programmabl&ateArray (FPGA). The
work was carriedout asan experimentin mappinga bit-level, logically intensive
application onto the speciflogic resources of a fine-grained FPGA. By exploiting
the reconfigurationcapabilitiesof the Atmel FPGA, individual layers of the net-
work aretime multiplexedonto the logic array. This allows a larger ANN to be
implemented on ajle FPGA at the expense of slower overall system operation.

1. Introduction

Artificial neural networks, or connectionistclassifiers are massivelyparallel
computationsystemghat arebasedon simplified modelsof the humanbrain. Their
complexclassificationcapabilities,combinedwith propertiessuchasgeneralisation,
fault—toleranceand learning make them attractivefor a rangeof applicationsthat
conventionalcomputerdind difficult. Examplesof theseinclude video motion de-
tection, hand-written charactercagnition and complex control tasks.

Traditionally, ANNs havebeensimulatedin softwareor implementeddirectly in
special-purposeligital and analoguehardware. More recently, ANNs have been
implementedwith reconfigurableFPGAs. Thesedevicescombineprogrammability
with the increasedspeedof operationassociatedvith parallel hardwaresolutions.
Oneof the principal restrictionsof this approachhowever,is the limited logic den-
sity of FPGAs resulting from the intrinsic overhead of device programityabi

This paperpresentsan alternativeapproachto previously reportedneural net-
work implementation®n FPGAS[2][3][7]. The novelty of the designis achieved
by exploiting severaldesignideaswhich havebeenreportedpreviouslyin different
designsandby combiningthemto form a newimplementation. The designis based
on a fine—grained FPGA implementation of an ANN in contrastdstof the FPGA
implementationseportedto date. It emphasisesareful selectionof network topd-
ogy and methodsof realisationto producea circuit which mapswell to the special
requirements of fine-grained architectures. These includestiisationof the ANN
using digital pulse—streantechniquesand the choiceof a feedforwardnetwork to-
pology. It further exploits the use of run—time device reconfigurationto time—



multiplex network layersto offset the logic density limitations of currentdevices.
Thesetopics are introducedin sectiontwo, where a reconfigurablepulse-stream
ANN architecture[5][6] that is well suited for implementationon fine—grained
FPGAsis described. Sectionthreereviewssomeof the physicaldesignissuesthat

arosewhenmappingthe ANN ontothe AT6005 architectureandin sectionfour the

performance of the network is appraised.

2. Reconfigurable ANN based on Pulse—Stream Arithmetic

2.1 Overview

ANNs employlarge numbersof highly interconnectegbrocessinghodes,or neu-
rons. Each neuron contains a number of synapses, which multiplyneacbninput
by a weightvalue. Theweightedinputsareaccumulatedndpassedhrougha non—
linear activationfunctionasillustratedin Fig. 1. Thesearithmetic—intensivepea-
tions and numerousinterconnectionsare expensivein terms of logic and routing
resourcesvhenimplementedon an FPGA. Typically, as a result of theserestric-
tions, expensivearraysof FPGAshaveto be employedto implement“useful” ne-
works [2], or alternatively,a single neuronis placedon the FPGA and usedto
emulate a network serially [3].

Xo

\ f = ActivationFunction
X Wo
1 Wl
N
g — / y= f(wa)

Fig. 1. The components of a simple artificial neuron.

The reportedANN incorporatesthree approachego overcominglogic density
limitations. First, pulse-streanarithmeticis usedto provide an efficient mappingof
the network onto a fine-grained FPGA. This techniigusiscussedn moredetailin
section2.2

Seconda reductionin the numberof inter—neuronconnectionswhich consume
valuablerouting resourcesjs madeby adoptinga layered, feed—forwardnetwork
topology. As Fig. 2 shows,in contrastto the fully—interconnectedetwork, the lay-
eredtopology hasconnectiononly betweennodesin adjacentlayers. Further,su-
pervised training is used to eliminate teedfor feedbackconnections.This makes
for easierpartitioning of the network, sincedataflow throughthe networkis uni—
directional, from the input layer to the output layer.



Finally, by exploiting the reconfigurability of static memory—basedPGAs,the
ANN canbe time-multiplexedso that one physicallayer is reconfiguredto perform
the function of all the othernetworklayers. This makesit possibleto implementa
muchlarger designthanwould otherwisebe possibleon a single device. However,
for this strategyto be successfuit is importantthatthe time spentreconfiguringthe
FPGAI s relatively short, otherwisethe speedof the overall networkis severelyde-
graded.

Fully Interconneded LayeredNetwork
Network

Fig. 2. Fully interconnected and layered ANN topologies

The ANN is implementedon an Atmel AT6005 (formerly ConcurrentCli6005).
This is a fine-grainedFPGAwhich is presentlythe only commerciallyavailablede-
vice capableof beingdynamicallyreconfigured i.e. selectivelyreconfiguredwhile
thelogic arrayis active[4]. It will be shownthat by exploiting this capability,and
only reconfiguringthosepartsof the arraywhich differ betweemetworklayers,it is
possibleto dramaticallyreducethe amountof systemprocessingtime that is lost
during reconfigiration.



2.2 Pulse Stream Arithmetic

Pulse Frequencylodulation(PFM) is a codingschemenherecircuit statevalues
arerepresentedby the frequencyof narrow constant—widthpulses. Fig. 3 showsan
exampleof PFM, wherethe fractionalvalue 7/16 is representedby the presencef 7
pulsesin a 16—pulsewindow. Signalsencodedn this mannercanbe summedand
multiplied using simple logic gates. This technique known as pulse—streanarith-
metic [5], mapswell onto fine—grainedFPGAssuchas the Atmel AT6005 which
contain a large number of low fan—in gates.
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Fig. 3. Example of a Pulse Frequency Modulated signal.

2.3 Pulse Stream Neuron

In Sectionl the principal componentf an artificial neuronwere introduced.
Here, the digital pulse—streamimplementationof synaptic weight multiplication,
post—synaptic summation and non-linear activation eseritbed.

The inputs to the ANN are encodedas a constantstreamof narrow pulses.
Within eachsynapsethis pulsestreammustbe gatedso that only a certainpropa-
tion of the pulsesareallowedto passthroughto the summationstageof the neuron.
This proportionrepresentshe value of the synapticweight. A suitablegating func-
tion can be constructed by selectivEliRingtogethera seriesof choppingclocks[5].
Theseare synchronouspon—overlappinginary clockswith duty cyclesof 1/2, 1/4,
1/8 andsoon. Fig. 4 showsa 4-bit choppingclock generatomvhich canbe usedto
constructweightsin the range0 to 15/16. Multiplication of the input pulse—stream
by the weight value can be achievedby simply ANDing the input and the gating
function, as shown in the diagram.
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Fig. 4. Pulse arithmetic using simple logic gates

A synapseoutputis either excitatory i.e. it increaseghe chanceof the neuron
firing, or inhibitory. In the pulse—streamrmeuron, positive and negativesynaptic
weights are accomplishecby feeding excitatory and inhibitory synapseoutputsto
separateip anddowninputs of a binary counter.

The neuronactivationfunction is a simple binary stepfunction, ratherthanthe
sigmoid function that is often used. There are two principal reasonsbehind this
choice:

1. The sigmoid function is considerablymore complexto implement,and re-

guiresneuronoutputsto havea rangeof valuesratherthan a simple binary
output.

2. The binary stepfunction’s primary limitation appliesto networkswhich em-
ploy back—propagation learning, which are less likelgonvergeon a correct
solution without the smoothing effect of thigmoid. The ANN reportedhere
uses gpervised learning, so this restriction is less relevant.

The outputof the neuronis thereforecalculatedusinga simplethresholdingop-
erationbasedon the mostsignificantbit of the counter. Fig. 5 showsa block dia-
gram of the complete digital pulse—stream neuron.
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Fig. 5. Pulse—Stream Neuron



2.4 Pulse Stream Artificial Neural Network

Fig. 6 showspulse—streamrmeuronsconnectedogetherto form a single layer of
the ANN. A layerconsistsof a maximumof four neurons gachwith four synapses
to allow full connectivitybetweensuccessiveetworklayers. Therestrictionto four
neurons is imposed ke needto lay outthe designon a single AT6005 device,and
is discussed more fully in the following sections.

Inputsto the circuit arelatchedandencodednto non—overlappingulse—streams
sothaton any given systemclock cycle a pulseappearon only oneinput line. This
ensureghatpulsesareprocesseaneat a time by the neuralcounter. The chopping
clocks aredistributedto everysynapsewherethey are selectivelycombinedto repre-
sentthe weightvalue. Synapticweightshavea resolutionof four bits. Higherreso-
lution weights require more chopping clocks to be distributed to the synapses.
Moreover,eachadditionalweight bit doublesthe numberof pulsesneededo repre-
sentcircuit valuesand hencehalvesthe processingspeedof the network. Four bit
weightswerethereforechosenasa compromisebetweenspeedof operationand ac-
curacy.

After processingpf a networklayeris complete the neuronoutputsare latched,
andthe FPGAIis reconfiguredo load the nextlayer. Any unusedneuronsin alayer
can effectively be “switched off’ by assigningthem zero—valuedweights. This
meansthat the only partsof the circuit to be reconfiguredare the OR gatesin each
synapse which are used to combine chopping clocks.

After reconfiguration, the previous layer’s outputs arettethe input latchesand
the next layer processed. When fimal layeris completedhe networkoutputscan
be sampled.

To implementthe completecircuit within the FPGA, it is importantthatboththe
input and outputlatches,and the FSM which controlsreconfiguration retain their
stateduring devicereprogramming.This requiresdynamicreconfigurationj.e. par-
tial reconfiguratiorwhile the logic array of the FPGAremainsactive[4]. Notethat
in this particular system no datapattocessingakesplaceonthelogic arrayduring
reconfiguration. This limited form of dynamicreprogrammingwherethe logic ar-
ray remainsactive only to maintain storagevalues,constitutesa sub—classof the
wider classof dynamicreconfiguration. Currently,the only commerciallyavailable
FPGAs capable ofythamic reconfiguration are the Atmel AT6000 series [1].
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Fig. 6. Single Layer of Pulse—Stream ANN

3. Implementation on the Atmel AT6005

3.1 AT 6000 Series Architecture

The Atmel AT6005 FPGA comprises an arraybdfx 54 fine—grainedcells,each
of which canimplementall common2-inputfunctions,or certainfunctionsof 3 in-
puts
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Fig. 7. Atmel AT6000 Series Architecture

alongwith a singlestorageregister(seeFig. 7). Routingresourcesresplit between
slower through—cellconnectionsand fast long—rangebussesa limited number of



which areavailableto eachblock of 8 x 8 cells. The equivalentgatecapacityof this
architecture is quoted by the manufacturer as 5000 gates.

3.2 Circuit Layout on the AT6005

The pulse—stream ANN circuitmjyasmanuallyplacedandroutedon the AT6005
FPGA for the following rasons:

* TheAtmel APR tool employsa generouplacementlgorithmwith respecto
inter—component spacing. This appears tof@misedfor maximumrouting
flexibility, but makesit difficult to achievethe degreeof macroclusteringre-
quired for this design.

» Timing is critical when implementingpulse—streantircuitry, as excessive
signalskewcanresultin errorsdueto two or more pulsesoverlapping. Sub—
circuitsthereforehaveto be placedsymmetricallysuchthat delayson the sig-
nal lines which distribute pulse—streamand choppingclocks are well ba-
anced. Thesespecialtiming requirementsare difficult to achievewith the
currentAtmel tools, which usea simple orderedlist of netsto enablethe de-
signer to prioritise routing. A moreadvancediming—drivenlayouttool such
as that supplied by Xilinx woulde neededo providethe necessaryiexibility

[8].

» The layout of the synapsecircuits hasto be optimisedto minimise the time
needed to reconfigure the device between layers of the network.

An InteractiveLayout Editor is shippedwith the developmensystem,and this
was used for manual desitayout. Fig. 8 showsthe floorplan of the FPGAwith the
first layer of the ANN after placement and routing.

The diagramdoesnot fully indicatethe extensiveamountof long—rangerouting
consumed by the desigi@onsiderablareasof the logic arrayhadcellswhich could
not be usedfor logic becausethe adjacentrouting busseswere already heavily
committed. The only way into and out of suchareasis via through—cellrouting,
which is in general inappropriate forything but short nets.

A potential shortcoming of the Atmel architectuvasencounterediuring circuit
layout. As with mostdesignsthe ANN requiresa large numberof OR—gatesjn-
cluding a numberwith wide inputs. Unfortunately,both the 2—input OR—gatemac-
ros have limitations — one is slow and takesup three cells, while the single cell
versionis fast but hasinflexible connections. Furthermorethe Atmel literaturein-
dicatesthatit is not possibleto implementa totally glitch—freesingle cell OR func-
tion, dueto the natureof the internal cell structure. The provision of a wired—OR
capability would have been a considerable advantage for this design.
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Fig. 8. Layout of a single network layer on the AT6005

The equivalentgatecountcalculatedoy the Atmel softwarefor a single network
layer (seeFig. 9) equatedo a utilisation figure of 24.3%. It is clearfrom the table
thatrouting forms a very significantproportionof the layout— more cells are used
for routing thanfor logic (462 routing cells versus476 logic cells), while 529 local

and 68 &press buses are also used.

Utilization Summary Utilized
Number of Maros 273
Number of Flip-Flops 59
Number of Gates 417
Number of Turns 65
Number of Buses: 597
Local Buses: 529
Express Buses: 68
Number of IO's: 13 of 64
Number of Cells: 938 of 3136
Number of Equivalent 1216.5

Fig. 9.

Design utilisation summary produced by Atmel software



3.3 Reconfiguration of the AT6005

To fully reconfigurethe Atmel chip takesa minimum of 808us, althoughthis is
only necessaryhenloadingthe first network layer. For subsequentayerspartial
reconfigurationcan be usedsincethe only changego be madeare to the synaptic
weights.

Partial configurationsare loadedinto the deviceas a seriesof one or more win-
dows, eachof which containsprogrammingdatafor a single contiguousblock of
cellsalonga row of the device. Every reconfigurationhasan overheadof 10 bytes
for preambleand control information, and each separatewindow within the bit-
streamcarriesan additionaloverheacbf 5 bytes. In orderto maximisereconfigua-
tion speed, thefore, the following rules apply:

* Thenumberof cells reconfiguredshouldbe the absoluteminimum necessary
to effect the required circuit changes.

» Configurationsshouldbe loadedat the maximum permissiblerate, which in
the case of the AT6005 is 10MHz. This typically requires some &bmlirect
memory access.

* The numberof configurationwindows shouldbe keptto a minimum. This
has implications for circuit layout, since the reconfigurationof contiguous
blocks of cells is faster than a “fragmented” reconfiguration.

It is worth noting thatif any two windowsare separatedy lessthanthreecells
(i.e. 6 bytesof configurationdata)it is fasterto mergethe two windowsandoverlay
the interveningcells with an identical configuration. Experimentssuggesthat any
storedresultsin thesecellsare unaffectedoy the reconfigurationoperation,although
this is not spdéied in the Atmel documentation.

4. Results and Performance

To date,the ANN hasonly beentestedwith the binary XOR function. This sim-
ple problemis non-linearlyseparablewhich meansthat it requiresa network with
at leastone hiddenlayer. The appropriatesynapticweightswere calculatedmaru-
ally and subsequentlyncorporatednto the FPGA configurationsas detailedin sec-
tion2.4.

Testing of the ANN took place with the aidof an FPGA prototyping system
which was developedn—house. This is basedarounda pair of Inmos Transputers
which handlecommunicationdetweenthe FPGA and a host computer,and also
provide control over reconfigurationof the AT6005. Whilst this systemis highly
flexible, it is currently unableto matchthe maximumconfigurationloading rate of
the AT6005, whictwould requirea write cycleof 100ns. A mechanisnto allow the
FPGAto directly accesdast memoryto achievefull reconfigurationspeedis under
development at the time of writing.

With a 20MHz systemclock, eachlayer of the ANN takes6.5us to producean
output. Reconfiguratiorbetweemetworklayersfor the XOR problemtakes17.6.s



whena 10MHz configurationloading clock is applied. This is fasterthanthe gen-
eral casehowever sincefor this specificproblemsomeweightsarethe samein suc-
cessivenetwork layers. The initial full configuration,for the first network layer,
takes808us. This only takesplacewhenthe networkis first initialised and so has
not been included in the performance okdtons.

The three—layerANN can produceresultsfor the XOR problem at a rate of
24kHz,whenreconfigurationoverheads takeninto account. This correspondgo a
network performanceof 0.77M CPS(Connectionder Second). In comparisonthe
samenetworkimplementedusingfull staticreconfigurationagainat the maximum
configurationloading rate, would produceresultsat a rate of only 625Hz, or 20k
CPS. Thus,for this network, partial reconfigurationgivesa speedumf 38 over full
reconfigurationaswell asa reductionin the amountof externalconfigurationstar-
age needed.

The reportednetwork is considerablyslower than “static” FPGA—basedANNs
such as the GANGLION, which is reported to operate at 4.48G CPS [2]. It should be
borne in mind, however, that this impressive performance is achievedsterable
expensepsingan array of morethan 30 large Xilinx devicesin a fixed configura-
tion. Wherethe techniqueof time—multiplexingoffers benefitis asa cost—effective
solution to ANN mplementation which uses limited logic resources.

5. Conclusions

Theauthorshavea particularinterestin investigatingpotentialapplicationareas
for dynamicallyreconfigurableFPGAs. Sincethe only FPGAscapableof dynamic
reconfigurationto dateare fine—graineddevices the technologymappingof recan-
figurable designsonto fine—grainedFPGAs is a valuableexperiment. The ANN
implementationreportedhere has provided useful information about mappingthis
type of circuit onto the particular resourceset of fine—grainedFPGA architectures
suchasthe Atmel AT6005. Further,the useof reconfiguration,andin particular
dynamic reconfiguration,has led to the implementationof a considerablylarger
ANN than would otherwise be possible on a single FP®#ilst the currentsystem
is limited to the time—multiplexingof whole network layers, the extensionof the
techniqueto allow individual layersto be partitionedfor time—sharingwould offer
the potential of larger networks and is currently under coratider

The work donein developingthe pulse—streanANN hashighlightedcertainre-
strictionsin both the reconfigurationmechanisnof the AT6005 andthe CAD tools
usedto producedesignsonit. Whencomparedo the systemspeedgossibleon the
logic array, reconfigurationis currently very slow. If the advantage®f devicere-
configurationare to be exploitedin real-timeapplications,t is importantthat this
situationis improved. In addition, no vendoryet providessoftwarefor the simula-
tion of reconfigurabledesigns,or floorplanningtools to optimisedesignlayoutsfor
fast reconfigrration.

Architecturalchangego the AT6005 havebeenidentified which would increase
the densityand performanceof the pulse—streanANN. Theseincludethe provision



of wired—OR capability, dedicatedfast carry logic for counters,increasedbussing
resources and a faster reconfiguration mechanism.

These observations point to a possible future direction for the development of new
FPGA architectures.Most designclassesmplementedon FPGAswould benefitin
someway from havingthe logic and routing resourcesavailableon the devicetai-
lored to the particular application. Moreover, many designs which exptmnfigu-
ration contain a proportion of logic that is always static. Performanceand
integration levels could be further increasedby providing dedicatedresourcesto
perform someof thesestaticfunctions. This approachs a naturalextensionof the
special purpose “hard macros” used in the Xilinx 4000 series devicesd®decal-
ing functions. In the caseof the pulse—streamANN, dedicatedpulse-streamand
choppingclock generationcould be combinedwith the architecturalchangesout-
lined previously to produce a Field ProgrammableArtificial Neural Network
(FPANN). Sucha devicewould losethe capabilityto implementlarge amountsof
generatpurposelogic, but would be particularly well suitedto the efficient imple-
mentation of ANNSs.

In general, it is conceivable that the optimisation of logic and routing resources to
specific application classes could help to bridge the performance gap b&fRGas
and ASICs, whilst retaining the benefits of reconfiguliibi
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