As you increment d from 1,2, 3, ... onwards, you do two things:

e Draw concentric circles, whose radii begin at 1 and increment by % In other
words, on each turn the circle’s diameter equals d + 1.

e Draw a sinusoid inside the unit circle, with increasing frequency.

Now, please notice that you are not really using anything from the sinusoid, other
than its zero (z-axis) intersects. That is, the sinusoid is a pretty artifact used only
to split the diameter of the unit circle (= 2) in d+ 1 equal parts, each of length di—s—l'

Of these equally spaced marks on the unit circle, the next-to-last is chosen (the
one which is one space from the right end of the unit circle), in order to draw a
vertical line from it. Since this mark is at a distance of dL—&—l (the space between
marks) from the right end of the diameter (which is at = 1), the mark (and the

vertical line) has = coordinate = 1 — %.

Here are a few screenshots of your Flash application for the cases d = 2 and
d = 3, together with a simplified diagram of the distances involved.
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Unit diameter divided in 4 paris

In each case, the intriguing feature is that the height of the point marked as P on
the outer circle has a height (y-coordinate) which appears to be exactly the square
root of d. Here is an explanation of why this occurs.

The simplified figures on the right show two right triangles, sharing a vertex (at
the origin) and the angle at that vertex. For a circle of radius R, any point of the



circle has coordinates

x = Rcos(angle)

y = Rsin(angle)

and, as the angle progresses, the point traces the circle. On the unit circle (where
R =1), the coordinates are simply the cosine and sine of the sweeping angle.

We know the z-coordinate of the point on the inner circle (z = 1 — 227); thus

d+
the angle is the arc-cosine of that value of x.

Now, the outer circle has diameter d + 1 and therefore radius %L, and so the
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height of P is
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the height of P simplifies to
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and, since

as expected.

Please note that the formula for the height of P is not tan(acos(...)); the tangent
of the angle is represented, on the unit circle, by a line (drawn below in green)
departing from the exact end of the diameter (and, appropriately, tangent to the
unit circle); this vertical line only coincides with P in the case where the outer circle
has radius 2 (because tan(acos(%)) happens to be v/3), but not in the general case.
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