Table 3 Shear, Moment, Slope and Deflection Formulas for Elastic Straight Beams

Case 1e Concentrated Intermediate Load; Left End Simply Supported, Right End Simply Supported

Concentrated intermediate load

Left end simply supported, right end simply supported

Notation file Provides a description of Table 3 and the notation used.

Enter dimensions, Before progressing further, calculate the moment of properties and loading inertia (I) for your cross section by flipping to Table 1. Enter the computed value below:

Table 1

Area moment of inertia:	$\mathrm{I} \equiv 3.495 \cdot \mathrm{in}^{4}$
Length of beam:	$\mathrm{L} \equiv 10 \cdot \mathrm{ft}$
Height of beam:	$\mathrm{h} \equiv 3 \cdot \mathrm{in}$
Distance from left	$\mathrm{a} \equiv 5 \cdot \mathrm{ft}$
edge to load:	$\mathrm{E} \equiv 30 \cdot 10^{6} \cdot \frac{\mathrm{lbf}}{\mathrm{m}^{2}}$
Modulus of elasticity:	$\mathrm{W} \equiv 1500 \cdot \mathrm{lbf}$
Load:	$\sigma_{\mathrm{y}}:=30 \mathrm{ksi}$

Boundary values The following specify the reaction forces (R), moments (M), slopes (θ) and deflections (y) at the left and right ends of the beam (denoted as A and B, respectively).

At the left end of the beam (simply supported):

$$
\begin{array}{ll}
\mathrm{R}_{\mathrm{A}}:=\frac{\mathrm{W}}{\mathrm{~L}} \cdot(\mathrm{~L}-\mathrm{a}) & \mathrm{R}_{\mathrm{A}}=750 \cdot \mathrm{lbf} \\
\mathrm{M}_{\mathrm{A}}:=0 \cdot \mathrm{lbf} \cdot \mathrm{in} & \\
\theta_{\mathrm{A}}:=\frac{-\mathrm{W} \cdot \mathrm{a}}{6 \cdot \mathrm{E} \cdot \mathrm{I} \cdot \mathrm{~L}} \cdot(2 \cdot \mathrm{~L}-\mathrm{a}) \cdot(\mathrm{L}-\mathrm{a}) & \theta_{\mathrm{A}}=-0.738 \cdot \mathrm{deg} \\
\mathrm{y}_{\mathrm{A}}:=0 \cdot \text { in } &
\end{array}
$$

At the right end of the beam (simply supported):

$$
\begin{array}{ll}
\mathrm{R}_{\mathrm{B}}:=\frac{\mathrm{W} \cdot \mathrm{a}}{\mathrm{~L}} & \mathrm{R}_{\mathrm{B}}=750 \cdot \mathrm{lbf} \\
\mathrm{M}_{\mathrm{B}}:=0 \cdot \mathrm{lbf} \cdot \mathrm{in} & \\
\theta_{\mathrm{B}}:=\frac{\mathrm{W} \cdot \mathrm{a}}{6 \cdot \mathrm{E} \cdot \mathrm{I} \cdot \mathrm{~L}} \cdot\left(\mathrm{~L}^{2}-\mathrm{a}^{2}\right) & \theta_{\mathrm{B}}=0.738 \cdot \mathrm{deg} \\
\mathrm{y}_{\mathrm{B}}:=0 \cdot \mathrm{in} &
\end{array}
$$

$x:=0 \cdot L, .01 \cdot L . . L$
$\mathrm{x}_{1}:=\frac{\mathrm{L}}{2}$
x ranges from 0 to L, the length of the beam.
Midpoint of the beam

Bending moment

$$
\begin{aligned}
& \mathrm{M}(\mathrm{x}):=\mathrm{M}_{\mathrm{A}}+\mathrm{R}_{\mathrm{A}} \cdot \mathrm{x}-(\mathrm{x}>\mathrm{a}) \cdot(\mathrm{x}-\mathrm{a}) \cdot \mathrm{W} \\
& \mathrm{M}\left(\mathrm{x}_{1}\right)=4.5 \times 10^{4} \cdot \mathrm{lbf} \cdot \mathrm{in} \\
& \frac{\mathrm{M}(\mathrm{x})}{\mathrm{lbf} \cdot \mathrm{in}} \\
& =-1.5 \times 10^{4}
\end{aligned}
$$

Deflection $\quad y(x):=y_{A}+\theta_{A} \cdot x+\frac{M_{A} \cdot x^{2}}{2 \cdot E \cdot I}+\frac{R_{A} \cdot x^{3}}{6 \cdot E \cdot I}-(x>a) \cdot\left[\frac{W}{6 \cdot E \cdot I} \cdot(x-a)^{3}\right]$
$y\left(x_{1}\right)=-0.515 \cdot$ in n

Stress

$$
\begin{aligned}
& \sigma(\mathrm{x}):=\frac{\mathrm{M}(\mathrm{x}) \cdot \frac{\mathrm{h}}{2}}{\mathrm{I}} \\
& \sigma\left(\mathrm{x}_{1}\right)=1.931 \times 10^{4} \cdot \mathrm{psi}
\end{aligned}
$$

$$
\mathrm{F}_{\max }:=\frac{4 \cdot \mathrm{I} \cdot \sigma_{\mathrm{y}}}{\mathrm{~L} \cdot \frac{\mathrm{~h}}{2}}=2.33 \times 10^{3} \mathrm{lbf}
$$

