
[The basis for the following work will be the definition of the trigonometric functions as
ratios of the sides of a triangle inscribed in a circle; in particular, the sine of an angle will
be defined to be the ratio of the triangle’s opposite side to its hypotenuse - which here
simplifies to being the triangle’s opposite side, as noted in the work. I make no reference to
the series definitions of the trigonometric functions. Angles are given in radian measure.

The explicit statement of the theorem proffered as data is given by Euclid VI 33.]

Continuity and Differentiability of the Trigonometric Functions

It may be taken as data that the ratio of the area of a circle to that (As) of a sector therein

is equal to the ratio of the circumference of the circle to the length (θsr) of the sector’s arc;

and thus

As
πr2

=
θsr

2πr
⇒ As =

θsr
2

2
(1)

Below is a geometric figure, illustrating a comparison of areas (which will prove useful.)
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We consider a unit circle, restricting our attention (for now) to angles x such that

0 ≤ x < π
2
. As the figure illustrates, for a sector described by an angle in this range,

the area of an inscribed triangle (whose height is sin(x), and whose base has unit length)

is less than or equal to the area of the sector. But the area of the triangle must be given

by
sin(x)

2 , whereas (1) indicates that the area of the sector is given by x
2 ; and from this, it

follows that

sin(x) ≤ x, 0 ≤ x < π
2

From the trigonometric identity (sin(−x) = -sin(x)), it follows similarly that for values

of x such that −π
2
< x ≤ 0, sin(x) is larger than or equal to x (using the identity, sin(x) =

−(−(sin(x))) = −(sin(−x)); but for x in this range, we know already that sin(−x) ≤ −x;

so − sin(−x) = sin(x) ≥ x). In short, we find

0 ≤ sin(x) ≤ x, 0 ≤ x <
π

2
(2)

x ≤ sin(x) ≤ 0, −π
2
< x ≤ 0 (3)

But from these the Squeeze Theorem tells us, since limx→0 x = limx→0 0 = 0, that

limx→0 sin(x) = 0. (In detail, we must take each of the one-sided limits as x approaches

zero; since these exist and are zero, the two-sided limit exists and is zero.)

From this we may the prove the fact, which we will shortly use, that limx→0 cos(x) = 1.

Proof : Fix ε > 0, and set δ1 =
√

2ε. Our foregoing work indicates that

∃δ2 : |sin(t)| < ε if 0 < |t| < δ2

In particular, if we consider x satisfying |x| < δ2, then - since
∣∣∣x
2

∣∣∣ < |x| generally - we

know that for any x on the interval, it is true that

∣∣∣sin(x
2
)
∣∣∣ < ε if 0 <

∣∣∣x
2

∣∣∣ < δ2

Therefore, for the δ in the limit statement
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|cos(x)− 1| < ε if 0 < |x| < δ,

choose δ = min(δ1, δ2). Then |x| < δ ⇒ |x|2 < 2ε, and thus
∣∣∣x
2

∣∣∣2 < ε
2 ; and our selection

of δ also implies that
∣∣∣sin2(x

2
)
∣∣∣ < ∣∣∣x

2

∣∣∣2 < ε
2 , so that

∣∣∣2 sin2(x
2
)
∣∣∣ < ε. But the trigonometric

identity (1− cos(x) = 2 sin2(x
2
)) indicates that we have

∣∣∣2 sin2(x
2
)
∣∣∣ = |cos(x)− 1| < ε

which shows that our δ is satisfactory.

With these limits in hand, we may additionally determine two more limits related to the

trigonometric functions which will be key to later work. These are

lim
x→0

sin(x)

x
= 1 (4)

lim
x→0

1− cos(x)

x
= 0 (5)

The proof of (4) has a geometric derivation which expands upon the derivation of limx→0 sin(x).
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Again inscribing a triangle in the unit circle, we extend this triangle so that the terminal

point of its hypotenuse lies above that of the radial axis of the angle’s measure, α. Thus the

length of the opposite side in this triangle is tan(x). Note that the area of the sector falls in

between
sin(x)

2 and
tan(x)

2 (these being the areas of the triangles inscribed in the circle,

and engulfing it, respectively). Therefore, for x satisfying 0 < x < π
2
,

sin(x)
2 <

x
2 <

tan(x)
2

Multiplying by
2

sin(x) , we find

1 <
x

sin(x) <
1

cos(x)

and, on taking reciprocals, we arrive at

1 >
sin(x)
x > cos(x)

To obtain a symmetric inequality for x satisfying −π
2
< x < 0, note that tan(x) is an odd

function; since we already have

sin(−x)
2 <

−x
2 <

tan(−x)
2

from our prior work, we take the negative of each constituent inequality, and find

sin(x)
2 >

x
2 >

tan(x)
2

Since sin(x) < 0 in this context, the step of multiplying by
2

sin(x) reverses the inequalities

once more:

1 <
x

sin(x) <
1

cos(x)
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and therefore taking reciprocals leaves us with the identical result. Thus,

1 >
sin(x)
x > cos(x) if 0 < |x| < π

2

Now - to make explicit how the Squeeze Theorem may be applied here to derive (4) -

we may fix ε > 0. For this ε, since limx→0 1 = limx→0 cos(x) = 1, we know that there

exist δ1, δ2 > 0 such that |0| < ε if 0 < |x| < δ1 and |cos(x)− 1| < ε if 0 < |x| < δ2.

Choosing δ = min(δ1, δ2,
π
2
), we find that if 0 < |x| < δ, then 1 >

sin(x)
x > cos(x), and so

1 + ε > 1 >
sin(x)
x > cos(x) > 1− ε.

Therefore
∣∣∣ sin(x)

x
− 1

∣∣∣ < ε if 0 < |x | < δ. This proves (4). (5) follows easily:

lim
x→0

1− cos(x)

x
= lim

x→0

(1− cos(x))(1 + cos(x))

(x)(1 + cos(x))
= lim

x→0

sin2(x)

(x)(1 + cos(x))

= (1)(lim
x→0

sin(x)

1 + cos(x)
)

= 0

We are now ready to prove the following theorems:

(1) Theorem: The six trigonometric functions are continuous on their natural domains.

(2) Theorem: The six trigonometric functions are differentiable on their natural domains.

Proof of (1): We show first that sin(x) is continuous everywhere.

We say that sin(x) is continuous at x0 if

lim
x→x0

sin(x) = sin(x0)

If we put h = x− x0, then this is equivalent to

lim
h→0

sin(x0 + h) = sin(x0)
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But, by the trigonometric identity for sin(α + β), and by our previous work,

lim
h→0

sin(x0 + h) = lim
h→0

[sin(x0) cos(h) + sin(h) cos(x0)]

= lim
h→0

sin(x0) lim
h→0

cos(h) + lim
h→0

sin(h) lim
h→0

cos(x0)

= (sin(x0))(1) + (0)(cos(x0))

= sin(x0)

Thus sin(x) is continuous for any arbitrary value in its domain, since the identity and

limit statements which we used hold true everywhere in its domain. Since the natural

domain of sin(x) includes all real values (our definition of sin(x) indicates that it is a

periodic function), sin(x) is therefore continuous everywhere.

Second, we show that cos(x) is continuous everywhere. As with sin(x), we may define the

condition for continuity of cos(x) at x0 by our variable h; i.e.,

lim
h→0

cos(x0 + h) = cos(x0)

implies continuity at this point. Using the trigonometric identity for cos(α+ β), and our

previous work,

lim
h→0

cos(x0 + h) = lim
h→0

[cos(x0) cos(h)− sin(h) sin(x0)]

= lim
h→0

cos(x0) lim
h→0

cos(h)− lim
h→0

sin(h) lim
h→0

sin(x0)

= (cos(x0))(1)− (0)(sin(x0))

= cos(x0)

Given the identically periodic nature (in relation to sin(x)) of cos(x), we conclude similarly

that cos(x) is continuous everywhere. Finally, we note that, since the other trigonometric

functions can be defined as ratios or reciprocals of sin(x) and cos(x), the continuity of

sin(x) and cos(x) guarantees that these ratios are also continuous where defined; and

the equivalence of these definitions with our original ones (based upon triangles inscribed

in circles) implies that the natural domain of these functions is coincident with where

these ratios are defined. Therefore, we conclude that these functions - and thus, all

trigonometric functions - are continuous on their natural domains.
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Proof of (2): We show only that sin(x) and cos(x) are differentiable everywhere; it then

follows unambiguously from the Quotient Rule for derivatives that the other trigonomet-

ric functions are differentiable on their natural domains. (Their formulaic derivatives may

be determined by use of the Quotient Rule as well.)

For sin(x), the derivative exists and is given by

lim
h→0

sin(x+ h)− sin(x)

h
= lim

h→0

sin(x) cos(h) + sin(h) cos(x)− sin(x)

h

= lim
h→0

sin(x) cos(h)− sin(x)

h
+ lim

h→0

sin(h) cos(x)

h

= − sin(x) lim
h→0

1− cos(h)

h
+ cos(x) lim

h→0

sin(h)

h
= cos(x)

and for cos(x),

lim
h→0

cos(x+ h)− cos(x)

h
= lim

h→0

cos(x) cos(h)− sin(h) sin(x)− cos(x)

h

= lim
h→0

cos(x) cos(h)− cos(x)

h
− lim

h→0

sin(h) sin(x)

h

= − cos(x) lim
h→0

1− cos(h)

h
− sin(x) lim

h→0

sin(h)

h
= − sin(x)

and therefore both sin(x) and cos(x) are differentiable.
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