12 Classical -Mechanics

The acceleration induced in one body by another is some
definite function of their positions, velocities and internal
structure, and is unaffected by the presence of other bodies.
In a many-body system, the acceleration of any given body
is equal to the sum of the accelerations induced in it by
each of the other bodies individually. -

These laws, which appear in a rather unfamiliar form, are actually com-
pletely equivalent to Newton’s laws, as stated in the previous section. In
view of the apparently fundamental role played by the concept of force in
Newtonian mechanics, it is remarkable that we have been able to reformu-
late the basic laws without mentioning this concept. It can of course be
introduced, by defining it through Newton’s second law, (1.1). The util-
ity of this definition arises from the fact that forces satisfy Newton’s third
law, (1.3), while accelerations satisfy only the more complicated law, (1.7).
Since the mutually induced accelerations of two given bodies are always
proportional, they are essentially determined by a single function, and it
is useful to introduce the more symmetric concept of force, for which this
becomes obvious.

It is interesting to note, finally, that one consequence of our basic laws
is the additive nature of mass. Let us take a three-body system. Then,
returning to the notation of the previous section; the equations of motion
for the three bodies are

miay = Fip + Fi3,
maoas = Fa1 + Fag, (1.9)
mzaz = F3; + F3s.

If we add these equations, then, in view of (1.3), the terms on the right
cancel in pairs, and we are left with

miai + maag +mszaz =0, AH.HGV‘

which is the generalization of (1.7). Now, if we suppose that the force
between the second and third is such that they are rigidly bound together
to form a composite body, their accelerations must be equal: az = az. In
that case, we get

mia; = —(meg + ms)ag,

which shows that the mass of the composite body is just moz = ma + m3.
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1.4 External Forces

To find the motion of the various bodies in any dynamical system, we have
to solve two closely interrelated problems. First, given the positions and
velocities at any one instant of time, we have to determine the forces acting
on each body. Second, given the forces acting, we have to compute the
new positions and velocities after a short interval of time has elapsed. In
a general case, these two problems are inextricably bound up with each
other, and must be solved simultaneously. If, however, we are concerned
with the motions of a small body, or group of small bodies, then we can
often neglect its effect on other bodies, and in that case the two problems
can be separated.

For example, in discussing the motion of an artificial satellite, we can
clearly ignore its effect on the Earth. Since the motion of the Earth is
already known, we can calculate the force on the satellite as a function of
its position and (if atmospheric resistance is included) its velocity. Then,
taking the force as known, we can solve separately the problem of its motion.
In the latter problem, we are really concerned with the satellite alone, The
Earth enters simply as a known external influence.

In many cases, therefore, it is useful to concentrate our attention on a
small part of a dynamical system, and to represent the effect of everything
outside this by external forces, which we suppose to be known in advance,
as functions of position, velocity and time. This is the kind of problem with
which we shall be mainly concerned in the next few chapters. Typically,
we shall consider the motion of a particle under a known external force.
In Chapter 6, we consider, for the gravitational and electrostatic cases,
the complementary problem of determining the force from a knowledge of
the positions of other bodies. Later, in Chapter 7, we return to the more
complex type of problem in which the system of immediate interest cannot
be taken to be merely a single particle.

1.5 Summary

To some extent, the selection of a group of basic concepts, in terms of which
others are to be defined, is a matter of choice. We have chosen to regard
position and time (relative to some frame of reference) as basic. From this
point of view, Newton’s laws must be regarded as containing definitions in
addition to physical laws. The first law contains the definition of an inertial
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and the UEE&.@_@ of relativity discussed in §1.1. This arises from the fact
that if the speed of light is constant with respect to one inertial frame
— as it should be according to electromagnetic theory — then the usual
rules for combining velocities would lead to the conclusion that it is not
constant with respect to a relatively moving frame, in contradiction with the
statement that all inertial frames are equivalent. This paradox can only be
resolved by the introduction of Einstein’s theory of relativity (i.e., ‘special’
relativity). Classical electromagnetic theory and classical mechanics can be
incorporated into a single self-consistent theory, but only by ignoring the
relativity principle and sticking to one ‘preferred’ inertial frame.

1.3 The Concepts of Mass and Force

It is an important general principle of physics (though not universally ap-
plied!) that no quantity should be introduced into the theory which cannot,
at least in principle, be measured. Now, Newton’s laws involve not only
the concepts of velocity and acceleration, which can be measured by mea-
suring distances and times, but also the new concepts of mass and force.
To give the laws a physical meaning we have, therefore, to show that these
are measurable quantities. This is not quite as trivial as it might seem,
because any experiment designed to measure these quantities must nec-
essarily involve Newton’s laws themselves in its interpretation. Thus the
operational definitions of mass and force — the prescriptions of how they
may be measured — which are required to make the laws physically signifi-
cant, are actually contained in the laws themselves. This is by no means an
unusual or logically objectionable situation, but it may clarify the status

of these concepts to reformulate the laws in such a way as to isolate their

definitional element.

Let us consider first the measurement of mass. Since the units of mass
are arbitrary, we have to specify a way of comparing the masses of two given
bodies. It is important to realize that we are discussing here the inertial
mass, which appears in Newton’s second law, (1.1) and not the gravitational
mass, which appears in (1.5). The two are of course proportional, but this
equivalence principle is a physical law derived from experimental observa-
tion {in particular from Galileo’s observations of falling bodies, from which
he deduced that in a vacuum all bodies would fall equally fast) rather than
an a priori assumption. To verify the law, we must be able to measure each
kind of mass separately. This rules out, for example, the use of a balance,
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which compares gravitational masses.

Clearly, we can compare the inertial masses of two bodies by subjecting
them to equal forces and comparing their accelerations, but this does not
help unless we have some way of knowing that the forces are equal. However
there is one case in which we do know this, because of Newton’s third law. If
we isolate the two bodies from all other matter, and compare their mutually
induced accelerations, then according to (1.1) and (1.3),

mia; = —maaz, (1.n

so that the accelerations are oppositely directed, and inversely proportional
to the masses. If we allow two small bodies to collide, then during the colli-
sion the effects of more remote bodies are generally negligible in comparison
with their effect on each other, and we may treat them approximately as
an isolated system. (Such collisions will be discussed in detail in Chapters
2 and 7.) The mass ratio can then be determined from measurements of
their velocities before and after the collision, by using (1.7) or its immediate
consequence, the law of conservation of momentum,

miv1 + Movs = constant. (1.8)

If we wish to separate the definition of mass from the physical content of
equation (1.7), we may adopt as a fundamental axiom the following:

In an isolated two-body system, the accelerations always
satisfy the relation a3 = —ksjas, where the scalar ko
is, for two given bodies, a constant independent of their
positions, velocities and internal states.

If we choose the first body to be a standard body, and conventionally assign
it unit mass (say mi1 = 1 kg), then we may define the mass of the second
to be ko1 in units of this standard mass (here ma = kg; kg).

Note that for consistency, we must have k12 = 1/ko;. We must also
assume of course that if we compare the masses of three bodies in this way,
we obtain consistent results:

For any three bodies, the constants k;; satisfy k31 = ksako.

It then follows that for any two bodies, k33 is the mass ratio: ks = maz/ma.

To complete the list of fundamental axioms, we need one which deals
with systems containing more than two bodies, analogos to the law of
composition of forces, (1.2). This may be stated as follows:
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that if we are interested in the overall motion of even a very large object,
such as a planet, we may often legitimately treat it as a point particle
located at the centre of mass of the body. The laws themselves prescribe
the meaning of the ‘position’ of an extended body.

We shall begin by simply stating Newton’s laws, and defer to the follow-
ing section a discussion of the physical significance of the concepts involved,
particularly those of mass and force. ‘

Let us consider an isolated system comprising N bodies, which we label
by an index i = 1,2,..., N. By saying that the system is isolated, we mean
that all other bodies are sufficiently remote to have a negligible influence
on it. Each of the N bodies is assumed to be small enough to be treated
as a point particle. The position of the ith body with respect to a given
inertial frame will be denoted by r;(¢t). Its velocity and acceleration are

vi(t) = #:(2),
ai(t) = vi(t) = #4(t),
where the dots denote differentiation with respect to the time ¢. For exam-
ple !
i dr
< de’
Each body is characterized by a scalar constant, its mass m;. Its momentum
p; is defined to be mass x velocity:

D; = Myv;.

The equation of motion, which specifies how the body will move is Newton’s
second law (mass x acceleration = force):

p; = mia; = F, (1.1)

where F; is the total force acting on the body. This force is composed of
a sum of forces due to each of the other bodies in the system. If we denote
the force on the ith body due to the jth body by F';;, then

N .
Nﬂ_&”NﬂﬁuT.mumwn_l...nT.mus.Z”MUm.Qv AHMV
j=1
where of course F';; = 0, since there is no force on the ith body due to

itself. Note that since the sum on the right side of (1.2) is a vector sum,
this equation incorporates the ‘parallelogram law’ of composition of forces.
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The two-body forces F';; must satisfy Newton’s third law, which asserts
that ‘action’ and ‘reaction’ are equal and opposite,

Fji=-Fy. (13)

Moreover, F;; is a function of the positions and velocities (and internal
structure) of the ith and jth bodies, but is unaffected by the presence of
the other bodies. (It can be argued that this is an unnecessarily restrictive
assumption. It would be perfectly possible to include also, say, three-body
forces, which depend on the positions and velocities of three particles si-
multaneously. However, within the realm of validity of classical mechanics,
no such forces are known, and their inclusion would be an inessential com-
plication.) Because of the relativity principle, the force can in fact depend
only on the relative position

q.& =7r; — %u.
(see Fig. 1.1), and the relative velocity

Vij = U; — Uy

Fig. 1.1

If the forces are known, as functions of the positions and velocities,
then from (1.1) we can predict the future motion of the bodies. Given their
initial positions and velocities, we can solve these equations (analytically
or numerically) to find their positions at a later time.

There is here an implicit assumption of perfect knowledge and infinite
precision of calculation. It is now recognized (see Chapters 13, 14) that this
assumption is, in general, false, leading to a loss of predictability. However,
for the time being, we shall assume that our solition can be effected.




