Physics Forum Problem in Linear Independence

Given

$$
A=\left[\begin{array}{lll}
\mathbf{u} & \mathbf{v} & \mathbf{w} \tag{1}
\end{array}\right]
$$

in \mathbb{R}^{n} is linearly independent, prove that

$$
B=\left[\begin{array}{lll}
\mathbf{u}-\mathbf{v} & \mathbf{u}+\mathbf{w} & \mathbf{v}+\mathbf{w} \tag{2}
\end{array}\right]
$$

is also linearly independent. I gather it is. Suppose there exist scalars b_{1}, b_{2}, b_{3} such that

$$
\begin{align*}
b_{1}[\mathbf{u}-\mathbf{v}]+b_{2}[\mathbf{u}+\mathbf{w}]+b_{3}[\mathbf{v}+\mathbf{w}] & =\mathbf{0} \tag{3}\\
{\left[\begin{array}{lll}
\mathbf{u} & \mathbf{v} & \mathbf{w}
\end{array}\right]\left[\begin{array}{c}
b_{1}+b_{2} \\
-b_{1}+b_{3} \\
b_{2}+b_{3}
\end{array}\right] } & =\mathbf{0} \tag{4}
\end{align*}
$$

Since A is linearly indepenent, this equation is true if and only if

$$
\begin{array}{r}
b_{1}+b_{2}=0 \\
-b_{1}+b_{3}=0 \\
b_{2}+b_{3}=0 \tag{7}
\end{array}
$$

As a matrix, this is

$$
\begin{gather*}
{\left[\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\mathbf{0}} \tag{8}\\
{\left[\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]} \tag{9}\\
{[\mathbf{u}-\mathbf{v}]-[\mathbf{u}+\mathbf{w}]+[\mathbf{v}+\mathbf{w}]=\mathbf{0}} \tag{10}
\end{gather*}
$$

That looks like a linear dependence relationship to me,

$$
\left[\begin{array}{l}
b_{1} \tag{11}\\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

