Viscous Flows A.H. Shapiro and A.A. Sonin 6.16

Problem 6.16
This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin

air, pa

A rigid plane surface is inclined at an angle @ relative to the horizontal and wetted by a thin layer of highly
viscous liquid which begins to flow down the incline.

(a) Show that if the flow is two-dimensional and in the inertia-free limit, and if the angle of the inclination

is not too small, the local thickness h(x,t) of the liquid layer obeys the equation

oh oh
a + C% =0
where )
c= pgh sin 6
L

Demonstrate that the result of (a) implies that in a region where h decreases in the flow direction,
the angle of the free surface relative to the inclined plane will steepen as the fluid flows down the
incline, while in a region where h increases in the flow direction, the reverse is true. Does this explain
something about what happens to slow-drying paint when it is applied to an inclined surface?

Considering the result of (b) above, do you think that the steady-state solutions of the previous
problems would ever apply in practice? Discuss.

Solution:

(a)

Assumptions:

° ReH% <1
e two dimensional flow
e THIN layer = % _ characteristic height <1

characteristic length

Unknown: h(x,t)?

For the sake of completeness, this solution provides detailed nondimensionalization of full 2D Navier-
Stokes as well as continuity equations. So please bear with me!!

(1) Choose relevant scales: (* denotes dimensionless variables)
i Yz
L U
Y .Uy
H Vv

where P is an unknown pressure scale.
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(2)

Non-dimensionalize continuity:
Ov,  Ovy
I Tt T
Oox + y
U dvg n 14 v,
L Oox* L Oy*
Since dimensionless variables are assumed to be of the same order (O(1)),
v v

—_— A~ —

L H
H H
= V = ZU Where f < 1

=0

Non-dimensionalize Navier-Stokes:
x-direction:

U? ov} 4ot ov} 4o o P Op*
=z v __

P ot Tl T gy L o

Divide through by *;I—Z

U d2v: U a%;)

+pgsind+p (Lax 2 0y

pUH? [ du} L T _ PH?Op* ng2sine+ H\? &% 0%
uL ot* ox* Yoy* ) pUL Ox* ulU L x*?  Oy*?

Regy %:small small

y-direction:

U2H<811; , ovr *81);)__73317*

N M N 0+ H 62 * N 82 Z
P T o " Y arr T oy Hays PV TR\ 2902 T g2 g2

Divide through by ’;I—(i

pUH2 a’l}:j +v* 81}* - M _ _E 8]?* gH2 COSQ 82 aQ,Uy
ulL ot* or*  Yoy* wU 0y uU 5:10*2 L y*?
——
REH(%)QISHI&H small Small

Now assume that O 0(1)!

U
P = % < viscous pressure scale for low Re

Substitute this expression for P in z-direction equation:

pU H? Op* | pgH’sinf = 9*v;

H pUL Ox* uU oy*?
0= H oy . pgH?sin®  0%v?
L ulU Oy*2
small
pgH?sin  0%v} dp*  pgH?cos®
=|0= d 0= -
wlU + Oy*? an Ay* + wU
r—momentum y—momentum

Going back to the dimensional form,

0*v
0= pgsin® + p—on 6.16a
s (6.162)

1Notice we now only have a hydrostatic relation in y-direction
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(4) Solve for v, by integrating both sides of Eq. (6.16a):
0%v, pgsin @
dy = — d
oy Y / w Y
0%v, _ Py sin 0
a2 Y
Using B.C. that a;; =0 at y = h (free surface),

+C

_ pghsin®

"

0%, sin 6
:_wu (y—h)

Integrating again and using no-slip B.C. (v, = 0 at y = 0):
sin 6 1
v, = P (hy = 2y?) (6.16b)
1

(5) Use mass conservation to obtain a single evolution equation for h(x,t).

Consider the following control volume in the limit of Az — 0:

d o hix+ax)
ﬁmeV+ZéW—ydﬂﬂA—0 Ye(X) = V (x+AX)
h o
lim %%M+ﬁf0 vzdy =0 ok
Az—0 M
oh 0 h oh  0Q

The above equation can also be derived by combining the kinematic boundary condition, % +

vm% = Vy|y=n(z), With conservation of mass.
(6) Combine Eq. (6.16b) with Eq. (6.16¢):

oh @ [" pgsind 14
L hy — ~2)dy =
ot Tas ), T a (hy — 5y7)dy =0
Oh | pgsin® 0 E —0
ot w Oxr\3)
oh pgsind 5\ Oh
il = 1
5 T ( o ) 5z =0 (6.16d)

Eq. (6.16d) is a nonlinear wave equation with a solution of the form h = f(x — ct), where ¢ is the
wave speed.

(b) Since %inehQ >0, %—? and % have opposite signs to satisfy Eq. (6.16d).

Thus, where h is decreasing locally (92 < 0), h increases in time (%2 > 0).

% ;
Angle of free surface steepens because points of -h""s. \
larger h increase more rapidly (¢ ~ h?) than }

g pidly ( ) e

points of lower h: R
g =
f %
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Where h is increasing locally (9% > 0), h decreases in time (%% < 0),

Angle of free surface flattens because points of /‘ﬁ{' —> I
larger h decrease more rapidly (¢ ~ h?) than IR —
points of lower h:
<, +.
.. In the case of slow-drying paint, when there ke
is a bump, Eq. (6.16d) dictates that the bump /f\ Y
grows! However it never forms a shock because PPN, e 5 M
in reality, one has to consider effects of surface <, 2
tension.

In practice, the solution to Eq. (6.16d) fails (or goes unstable) in the case of a symmetric perturbation,
as explained in (b). Thus, it is not very applicable unless one accounts or effects of surface tension and
such.

However, when h is monotonically increasing (% > 0 everywhere) the solution to Eq. (6.16d) is indeed
stable since it predicts that h flattens in time.

Problem Solution by Sungyon Lee, Fall 2005
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Problem 6.21

(a) In terms of flow geometry, this problem is similar to 6.3; the difference here being
that the flow is “unsteady’!

Writing the Navier-Stokes equation in the cylindrical gap between the bearing pad and
ground:

r r

Ou Ou, u, ou, ou, u,’ op 1 8( 8ur] 1 &°u, O°u, u, 2 Ou,
Ly - = r + +

Pl ™ "0 ™ e T o el e ) e T 2 o0
—_ — —— =
1 17 17 w V Vi

Let’s perform an order-of-magnitude analysis. Note that 8_89 =0.

1w KW

<]

2

(Note that terms 7V and V1 are of the same order, so that both vanish compared to V'!)

2
£~'0V’D[h—2]<<1
V u \D

Invoking the continuity equation in cylindrical coordinates, we have:

¥ or Oz r z

Also, we have

ur
J/ -
M 2
i u, @
z

From (1) and (2), we can say that /I and /1] are of the same order. Hence, both vanish
compared to V.

Now, lets look at where / stands! We have:
I ok
V. ur

where, 7 is the time scale involved in the this process. The source of unsteadiness is the

pad settling down, which renders u, and other flow variables time-dependent. Hence,
h 1 pSh

TN_ _—~

S V u

2.25 Advanced Fluid Mechanics Copyright © 2007, MIT



Since it is given that S is very small and also 4 is small, we can safely assume that / can
be neglected compared to V. Hence we have the N-S eqn as:

op o’u
-4 r
or " 0z*

Integrating, we get u, (z) as:
1 op
U =— zh—z
=l 2 (en-2)

2u
Wrr (_ GpJ h 7[1"( d_p) 3)
Y7 or 6u dr

=0(r)= mejl'ur (z)dz =

Note that Q is a function of 7, since the settling down of the pad drives greater and greater
flow rates as r increases! This can be verified by applying mass conservation in a
cylindrical CV, as shown. The height of this CV changes as A(?).

!w
vs

<—|____|__ i — fh(t)

Uy Uy

1

r=0

Deforming CV: Radius r, Height h(t)

j pdV + [ p(V V) iidA
C (N}

N Q~|'@~

rzh) +27rhu, =0= -1’ % =2nrhu, = O(r)

SHE

Since, @ =-S5, we have:

o®r)=nr’S

Plugging Q(r) into (3), we have:

ar’S =

3
hm/( dpj dp __6,u;8’rdr
6u dr h
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3uS( D’
:p(r):%(T—FZ]

where the BC used is p (g] =0 (gauge pressure!)

Now, we can perform a vertical force-balance on the pad:
D

2 2 4
W= SHS I(D—— r ]27rrdr _ 3muSD

"o 32h°
3
=S = §2Wg4- 4)
mu
(b) Plugging in the numbers, we obtain
-15
_ 32x100x27x10 —=12x10"m/s (very small!)
37x0.93x81x10
(c) From (4), we have:
dh  32Wh _ tdh ¢ 32W
=T = i et _[ 4 (5)
dt 3muD H h® 4 3muD
11 64mt { 64, }‘”2
> ———= =1+ t

h
:>_
Wk’ 3zuD | h, 3zuD*

(d) 2h = h,. Plugging in the values, we get the time required as 10.4 hours.

(e) Referring to relation (5), S = % instead of —% and consequently, we have:

1 1 64Ft

h h* 3zuD*

As the disk is pulled away, # — o and we have ¢, as:
. 3muD*
Y 64h’F

Solution by Mayank Kumar, Fall 2007
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