
Viscous Flows A.H. Shapiro and A.A. Sonin 6.16

Problem 6.16
This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin

viscous liquid
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A rigid plane surface is inclined at an angle θ relative to the horizontal and wetted by a thin layer of highly
viscous liquid which begins to flow down the incline.

(a) Show that if the flow is two-dimensional and in the inertia-free limit, and if the angle of the inclination
is not too small, the local thickness h(x, t) of the liquid layer obeys the equation

∂h

∂t
+ c

∂h

∂x
= 0

where

c =
ρgh2

µ
sin θ

(b) Demonstrate that the result of (a) implies that in a region where h decreases in the flow direction,
the angle of the free surface relative to the inclined plane will steepen as the fluid flows down the
incline, while in a region where h increases in the flow direction, the reverse is true. Does this explain
something about what happens to slow-drying paint when it is applied to an inclined surface?

(c) Considering the result of (b) above, do you think that the steady-state solutions of the previous
problems would ever apply in practice? Discuss.

Solution:

(a) Assumptions:

• ReH
H
L � 1

• two dimensional flow
• THIN layer ⇒ H

L = characteristic height
characteristic length � 1

Unknown: h(x, t)?

For the sake of completeness, this solution provides detailed nondimensionalization of full 2D Navier-
Stokes as well as continuity equations. So please bear with me!!

(1) Choose relevant scales: (* denotes dimensionless variables)

x∗ =
x

L
v∗x =

vx

U
t∗ =

tU

L

y∗ =
y

H
v∗y =

vy

V
p∗ =

p

P
where P is an unknown pressure scale.
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Viscous Flows A.H. Shapiro and A.A. Sonin 6.16

(2) Non-dimensionalize continuity:

∂vx

∂x
+

∂vy

∂y
= 0

U

L

∂v∗x
∂x∗

+
V

L

∂v∗y
∂y∗

= 0

Since dimensionless variables are assumed to be of the same order (O(1)),

U

L
∼ V

H

⇒ V =
H

L
U where

H

L
� 1

(3) Non-dimensionalize Navier-Stokes:
x-direction:

ρ
U2

L

(
∂v∗x
∂t∗

+ v∗x
∂v∗x
∂x∗

+ v∗y
∂v∗x
∂y∗

)
= −P

L

∂p∗

∂x∗
+ ρg sin θ + µ

(
U

L2

∂2v∗x
∂x∗2

+
U

H2

∂2v∗x
∂y∗2

)
Divide through by µU

H2 :

ρUH2

µL︸ ︷︷ ︸
ReH

H
L =small

������������(
∂v∗x
∂t∗

+ v∗x
∂v∗x
∂x∗

+ v∗y
∂v∗x
∂y∗

)
= −PH2

µUL

∂p∗

∂x∗
+

ρgH2 sin θ

µU
+
(

H

L

)2

︸ ︷︷ ︸
small

�
�
�∂2v∗x

∂x∗2
+

∂2v∗x
∂y∗2

y-direction:

ρ
U2

L

H

L

(
∂v∗y
∂t∗

+ v∗x
∂v∗y
∂x∗

+ v∗y
∂v∗y
∂y∗

)
= −P

H

∂p∗

∂y∗
− ρg cos θ + µ

H

L

(
U

L2

∂2v∗y
∂x∗2

+
U

H2

∂2v∗y
∂y∗2

)
Divide through by µU

H2 :

ρUH2

µL︸ ︷︷ ︸
ReH(H

L )2
=small

������������(
∂v∗y
∂t∗

+ v∗x
∂v∗y
∂x∗

+ v∗y
∂v∗y
∂y∗

)
= −PH

µU

∂p∗

∂y∗
− ρgH2 cos θ

µU
+
(

H

L

)3

︸ ︷︷ ︸
small

�
�
�∂2v∗y

∂x∗2
+

H

L︸︷︷︸
small

�
�

�∂2v∗y
∂y∗2

Now assume that PH
µU ∼ O(1):1

P =
µU

H
⇐ viscous pressure scale for low Re

Substitute this expression for P in x-direction equation:

0 = −µU

H

H2

µUL

∂p∗

∂x∗
+

ρgH2 sin θ

µU
+

∂2v∗x
∂y∗2

0 = − H

L︸︷︷︸
small

�
��∂p∗

∂x∗
+

ρgH2 sin θ

µU
+

∂2v∗x
∂y∗2

⇒ 0 =
ρgH2 sin θ

µU
+

∂2v∗x
∂y∗2︸ ︷︷ ︸

x−momentum

and 0 =
∂p∗

∂y∗
+

ρgH2 cos θ

µU︸ ︷︷ ︸
y−momentum

Going back to the dimensional form,

0 = ρg sin θ + µ
∂2vx

∂y2
(6.16a)

1Notice we now only have a hydrostatic relation in y-direction
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(4) Solve for vx by integrating both sides of Eq. (6.16a):∫
∂2vx

∂y2
dy = −

∫
ρg sin θ

µ
dy

∂2vx

∂y2
= −ρg sin θ

µ
y + C1

Using B.C. that ∂vx

∂y = 0 at y = h (free surface),

C1 =
ρgh sin θ

µ

⇒ ∂2vx

∂y2
= −ρg sin θ

µ
(y − h)

Integrating again and using no-slip B.C. (vx = 0 at y = 0):

vx =
ρg sin θ

µ
(hy − 1

2
y2) (6.16b)

(5) Use mass conservation to obtain a single evolution equation for h(x, t).
Consider the following control volume in the limit of ∆x→ 0:

d

dt

∫
CV

ρ dV + ρ

∫
CS

(v −��vc) · n̂dA = 0

lim
∆x→0

�ρ
d
dt���(h∆x) + �ρ

∫ h

0
vxdy

��∆x
= 0

⇒ ∂h

∂t
+

∂

∂x

(∫ h

0

vxdy

)
=

∂h

∂t
+

∂Q

∂x
= 0 (6.16c)

The above equation can also be derived by combining the kinematic boundary condition, ∂h
∂t +

vx
∂h
∂x = vy|y=h(x), with conservation of mass.

(6) Combine Eq. (6.16b) with Eq. (6.16c):

∂h

∂t
+

∂

∂x

∫ h

0

ρg sin θ

µ
(hy − 1

2
y2)dy = 0

∂h

∂t
+

ρg sin θ

µ

∂

∂x

(
h3

3

)
= 0

∂h

∂t
+
(

ρg sin θ

µ
h2

)
︸ ︷︷ ︸

c

∂h

∂x
= 0 (6.16d)

Eq. (6.16d) is a nonlinear wave equation with a solution of the form h = f(x− ct), where c is the
wave speed.

(b) Since ρg sin θ
µ h2 ≥ 0, ∂h

∂t and ∂h
∂x have opposite signs to satisfy Eq. (6.16d).

Thus, where h is decreasing locally (∂h
∂x < 0), h increases in time (∂h

∂t > 0).

Angle of free surface steepens because points of
larger h increase more rapidly (c ∼ h2) than
points of lower h:
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Where h is increasing locally (∂h
∂x > 0), h decreases in time (∂h

∂t < 0),

Angle of free surface flattens because points of
larger h decrease more rapidly (c ∼ h2) than
points of lower h:

∴ In the case of slow-drying paint, when there
is a bump, Eq. (6.16d) dictates that the bump
grows! However it never forms a shock because
in reality, one has to consider effects of surface
tension.

In practice, the solution to Eq. (6.16d) fails (or goes unstable) in the case of a symmetric perturbation,
as explained in (b). Thus, it is not very applicable unless one accounts or effects of surface tension and
such.

However, when h is monotonically increasing (∂h
∂x > 0 everywhere) the solution to Eq. (6.16d) is indeed

stable since it predicts that h flattens in time.

�

Problem Solution by Sungyon Lee, Fall 2005
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Problem 6.21 
 
(a) In terms of flow geometry, this problem is similar to 6.3; the difference here being 
that the flow is ‘unsteady’! 
 
Writing the Navier-Stokes equation in the cylindrical gap between the bearing pad and 
ground: 

2 2 2

2 2 2 2 2

1 1 2r r r r r r r r
r z

VII VII III IV

u uu u u u u u u upu u r
t r r z r r r r r r z r r

θ θ θρ µ u
θ θ θ

  
 ∂∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂   + + + − = − + + + − −   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

   

Let’s perform an order-of-magnitude analysis. Note that 0
θ
∂

=
∂

. 

2

2~ 1IV h
V D

<<  

 
(Note that terms IV and VI are of the same order, so that both vanish compared to V !) 
 

2

2~ 1rv DII h
V D

ρ
µ

 
<< 

 
 

 
Invoking the continuity equation in cylindrical coordinates, we have: 

( )1 0 ~z r
r

u uru
r r z r z

∂∂
+ = ⇒

∂ ∂
zu                                                                      (1) 

 
Also, we have 

~
r

z

u
II r

uIII
z

                                                                                                         (2)   

From (1) and (2), we can say that II and III are of the same order. Hence, both vanish 
compared to V. 
 
Now, lets look at where I stands! We have: 

2

~I h
V

ρ
µτ

        

 
where, τ is the time scale involved in the this process. The source of unsteadiness is the 
pad settling down, which renders u and other flow variables time-dependent. Hence,  r

~ ~h I S
S V

hρτ
µ

⇒  
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Since it is given that S is very small and also h is small, we can safely assume that I can 
be neglected compared to V. Hence we have the N-S eqn as: 
 

2

2 0rup
r z

µ ∂∂
− + =
∂ ∂

 

 
Integrating, we get u  as: ( )r z

     ( )21
2r

pu z
rµ
∂ = − − ∂ 

h z  

3 3

0

( ) 2 ( )
6 6

h

r
h r p h r dpQ r r u z dz

r d
π ππ
µ µ

∂  ⇒ = = − = −  ∂  ∫ r




                                      (3) 

 
Note that Q is a function of r, since the settling down of the pad drives greater and greater 
flow rates as r increases! This can be verified by applying mass conservation in a 
cylindrical CV, as shown. The height of this CV changes as h(t). 
 
 

Deforming CV: Radius r, Height h(t)

W

r = 0 

ur ur
h(t) 

S

 
 
 
   
 
 
 
 
 
 
 

   0 ( CS
CV CS

d dV V V ndA
dt

ρ ρ= + −∫ ∫ ).  

( )2 22 0 2r r
d dhr h rhu r rhu Q r
dt dt

π π π π⇒ + = ⇒ − = = ( )  

 

Since, dh S
dt

= − , we have: 
2( )Q r r Sπ=                                                                                                    

 
 
Plugging Q(r) into (3), we have: 
 

3
2

3

6
6

h r dp Srr S dp dr
dr h

π µπ
µ

 = − ⇒ = − 
 
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2
2

3

3( )
4

S Dp r r
h
µ  

⇒ = − 
 

 

where the BC used is 0
2
Dp   = 

 
 (gauge pressure!)  

 
Now, we can perform a vertical force-balance on the pad: 

 
2 42

2
3 3

0

3 32
4 3

D

S D SDrdr
h h
µ ππ

 
= − = 

 
∫ 2

µW r  

 
3

4

32
3

WhS
Dπµ

⇒ =                                                                                                    (4) 

 
 
(b) Plugging in the numbers, we obtain 
 

15
9

4

32 100 27 10 1.2 10 /
3 0.93 81 10

S m
π

−
−

−

× × ×
= = ×

× × ×
s     (very small!) 

 
 
(c)  From (4), we have: 
 

0

3

4 3
0

32 32
3 3

h t

h

dh Wh dh WS
dt D h Dπµ πµ

= − = ⇒ − =∫ ∫ 4 dt                                                            (5) 

 
1/ 22

0
2 2 4 4

0 0

641 1 64 1
3 3

WhWt h t
h h D h Dπµ πµ

−
 

⇒ − = ⇒ = + 
 

 

 
 
(d) 2 . Plugging in the values, we get the time required as 10.4 hours. 0h h=
 

(e)  Referring to relation (5), dhS
dt

=  instead of dh
dt

−  and consequently, we have: 

2 2
0

1 1 64
3

Ft
h h Dπµ

− = 4  

 
As the disk is pulled away,  and we have th →∞ ∞  as: 

4

2
0

3
64

Dt
h F

πµ
∞ =  

 
Solution by Mayank Kumar, Fall 2007                                                                            
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