Statement:

$$
P(n)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k}\binom{n-k}{k} x^{n-2 k}
$$

Proof (by induction):

Initial steps:

$$
\begin{align*}
& P(0)=(-1)^{0}\binom{0-0}{0} x^{0-2 \cdot 0}=1 \tag{1}\\
& P(1)=(-1)^{0}\binom{1-0}{0} x^{1-2 \cdot 0}=x \tag{2}
\end{align*}
$$

Induction step:

$$
\begin{align*}
P(n+1) & =x P(n)-P(n-1) \tag{3}\\
& =x \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k}\binom{n-k}{k} x^{n-2 k}-\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}(-1)^{k}\binom{n-k-1}{k} x^{n-2 k-1} \tag{4}\\
& =\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k}\binom{n-k}{k} x^{n-2 k+1}-\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}(-1)^{k}\binom{n-k-1}{k} x^{n-2 k-1} \tag{5}
\end{align*}
$$

Now we proceed on two distinct cases:

- When n is even: $\quad\left(\left\lfloor\frac{n}{2}\right\rfloor=\frac{n}{2},\left\lfloor\frac{n-1}{2}\right\rfloor=\frac{n}{2}-1,\left\lfloor\frac{n+1}{2}\right\rfloor=\frac{n}{2}\right)$

Taking out the first term $(k=0)$ of the first sum, in order to eventually group terms of the same degree together:

$$
\begin{align*}
P(n+1) & =x^{n+1}+\sum_{k=1}^{\frac{n}{2}}(-1)^{k}\binom{n-k}{k} x^{n-2 k+1}-\sum_{k=0}^{\frac{n}{2}-1}(-1)^{k}\binom{n-k-1}{k} x^{n-2 k-1} \tag{6}\\
& =x^{n+1}+\sum_{k=1}^{\frac{n}{2}}(-1)^{k}\left(\binom{n-k}{k}+\binom{n-k}{k-1}\right) x^{n-2 k+1} \tag{7}\\
& =x^{n+1}+\sum_{k=1}^{\frac{n}{2}}(-1)^{k}\binom{n-k+1}{k} x^{n-2 k+1} \tag{8}\\
& =\sum_{k=0}^{\left\lfloor\frac{n+1}{2}\right\rfloor}(-1)^{k}\binom{n-k+1}{k} x^{n-2 k+1} \tag{9}
\end{align*}
$$

as expected.

- When n is odd: $\quad\left(\left\lfloor\frac{n}{2}\right\rfloor=\frac{n-1}{2},\left\lfloor\frac{n-1}{2}\right\rfloor=\frac{n-1}{2},\left\lfloor\frac{n+1}{2}\right\rfloor=\frac{n-1}{2}+1\right)$

Here we will take out the first term $(k=0)$ of the first sum, and the last term $\left(k=\frac{n-1}{2}\right)$ of the second sum:

$$
\begin{align*}
P(n+1) & =x^{n+1}-(-1)^{\frac{n-1}{2}} \\
& +\sum_{k=1}^{\frac{n-1}{2}}(-1)^{k}\binom{n-k}{k} x^{n-2 k+1}-\sum_{k=0}^{\frac{n-1}{2}-1}(-1)^{k}\binom{n-k-1}{k} x^{n-2 k-1} \tag{10}\\
& =x^{n+1}-(-1)^{\frac{n-1}{2}}+\sum_{k=1}^{\frac{n-1}{2}}(-1)^{k}\left(\binom{n-k}{k}+\binom{n-k}{k-1}\right) x^{n-2 k+1} \tag{11}\\
& =x^{n+1}+(-1)^{\frac{n-1}{2}+1}+\sum_{k=1}^{\frac{n-1}{2}}(-1)^{k}\binom{n-k+1}{k} x^{n-2 k+1} \tag{12}\\
& =\sum_{k=0}^{\left\lfloor\frac{n+1}{2}\right\rfloor}(-1)^{k}\binom{n-k+1}{k} x^{n-2 k+1} \tag{13}
\end{align*}
$$

as before.

