
Digital Object Identifier (DOI) 10.1007/s00205-009-0216-y
Arch. Rational Mech. Anal. 193 (2009) 539–583

Fracture Paths from Front Kinetics: Relaxation
and Rate Independence

C. J. Larsen, M. Ortiz & C. L. Richardson

Communicated by The Editors

Abstract

Crack fronts play a fundamental role in engineering models for fracture: they
are the location of both crack growth and the energy dissipation due to growth.
However, there has not been a rigorous mathematical definition of crack front, nor
rigorous mathematical analysis predicting fracture paths using these fronts as the
location of growth and dissipation. Here, we give a natural weak definition of crack
front and front speed, and consider models of crack growth in which the energy
dissipation is a function of the front speed, that is, the dissipation rate at time t is
of the form ∫

F(t)
ψ(v(x, t))dHN−2(x)

where F(t) is the front at time t and v is the front speed. We show how this
dissipation can be used within existing models of quasi-static fracture, as well as in
the new dissipation functionals of Mielke–Ortiz. An example of a constrained prob-
lem for which there is existence is shown, but in general, if there are no constraints
or other energy penalties, this dissipation must be relaxed. We prove a general
relaxation formula that gives the surprising result that the effective dissipation is
always rate-independent.

1. Introduction

Even when cracks propagate by cleavage, that is, by the breaking of atomic
bonds in an otherwise perfect crystal, fracture is best understood as an irreversible
and dissipative process. Thus, when an elastic body undergoes fracture, the work
stored as elastic energy in the body is less than the work input into the body by the
applied loads. The excess work is invested as surface energy on the newly created
crack flanks and, from the standpoint of the interior of the elastic body, with surface
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excluded, is dissipated. Continuum thermodynamics provides a useful framework
for describing this irreversibility attendant to fracture. Thus, in that framework frac-
ture entails a certain entropy production and, contrariwise, crack healing entails an
entropy loss in violation of the second law. In this manner, the dissipation inequal-
ity introduces an irreversibility constraint, namely, that the crack area must be an
increasing function of time.

Considerable effort has recently been devoted, with notable advances along the
way, to developing a mathematically rigorous theory of fracture within the frame-
work of the modern calculus of variations. This framework, based on the space of
special functions of bounded variation SBV and Ambrosio’s SBV compactness
theorem [1], was originally developed primarily for the study of energy minimi-
zation problems; therefore, its application to fracture evolution requires additional
development in order to properly account for the no-healing irreversibility con-
straint in models for crack evolution. The approach so far to the mathematical
analysis of rate-independent fracture processes consists of the minimization of
incremental energy functionals that geometrically or energetically constrain crack
increments in order to enforce irreversibility, and then taking the limit as the time-
step goes to zero [4,6,7]. The spaces SBV and SBD (special functions of bounded
deformation) supply a powerful functional foundation for the development of the
theory. In particular, they provide an efficient accounting device, the singular or
jump set, for describing the crack surface.

In this paper we depart from this—by now standard—paradigm and consider
crack trajectories, as well as regard fracture as an irreversible process, ab initio.
Thus, we regard the body as a dissipative system in which the dissipation is concen-
trated at the crack front. In addition, crack advance is governed by a kinetic equation,
the so-called crack-front equation of motion, which relates the front velocity to the
energetic driving force. In this manner, physically important fracture phenomena,
not necessarily rate-independent, such as Paris-law fatigue crack growth [10] and
dynamic crack growth (for example, [11]) can potentially be properly accounted for.

Evidently, in the present approach the crack front emerges as a central object
for study. Interestingly, whereas the singular or jump set of SBV or SBD functions
has been extensively studied, the crack front, a set of co-dimension two, has much
less mathematical support. One of the objectives of this paper is to initiate the math-
ematical study of crack fronts. In particular, we give a natural weak definition of
crack front and front speed, and consider models of crack growth where the energy
dissipation occurs at the crack front and is a nonlinear function of the front speed,
so that it would seem that these models cannot be reformulated without reference
to the fronts.

In order to couch the resulting evolution problem within the framework of the
calculus of variations, we resort to a class of variational principles recently proposed
by Mielke and Ortiz [9]. These variational principles are tailored to dissipative
systems and are predicated on energy-dissipation functionals whose minimization
returns entire trajectories of the system. We define front for a certain class of these
trajectories, and formulate our model within this energy-dissipation framework.

Specifically, we consider the class of trajectories u with corresponding crack
trajectory C that is increasing and such that at each time t the discontinuity set
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S(u(t)) is a subset of C(t) (up to a set of HN−1 measure zero). Furthermore,
the crack trajectory has a front representation, that is, there exists a function F :
[0, T ] → 2�, and a family of functions v(·, t) : F(t) → R, such that

∫ T

0
ϕ̇(t)

∫
C(t)

f (x)dHN−1(x) dt = −
∫ T

0
ϕ(t)

∫
F(t)

f (x)v(x, t)dHN−2(x) dt

(1)

∀ϕ ∈ C1
0([0, T ]), ∀ f ∈ C0(�

′)

where � ⊂⊂ �′. We call the set F(t) the crack front or front at time t , and v
the front speed. Note that if (u,C) satisfies (1) then necessarily the measure of
C is absolutely continuous in time; however, it is unclear if absolute continuity is
sufficient. A quick calculation also shows that restricting to trajectories with v � 0
provides a new and equivalent way of enforcing the irreversibility of fracture, that
is, the monotonicity of C .

With this class we can then consider the problem of minimizing energies of the
form (see [9])

Iε[u] :=
∫ T

0
e− t

ε

{
1

ε

∫
�

W (∇u(x, t))dx +
∫

F(t)
ψ(v(x, t))dHN−2(x)

}
dt,

(2)

where ε > 0 is fixed. In Section 2 below, we discuss rate problems that can be
written in this form, while in Section 3 we justify this functional for fracture spe-
cifically.

A critical fact about this class of trajectories is that in order for a minimizing
sequence {ui }∞i=1 of (2) to converge (in the natural sense, to be described later)
to a trajectory u with corresponding crack C having a front representation, it is
necessary that ψ have superlinear growth at infinity, but this is not sufficient. There
are two reasons for this lack of compactness. First, it is possible that the discon-
tinuity sets of the ui close up as i → ∞ only for t within some time interval, so
that the limit u has discontinuity sets that appear instantaneously at the end of this
interval. Second, these sequences can have crack sets that exhibit the onset of a
mother–daughter microstructure, meaning that the crack grows by creating many
small cracks just ahead of the macroscopic crack front, effectively bypassing the
superlinear growth of ψ .

Our approach to the first issue is a weakening of the natural choice of C for a
given trajectory u—that C(t) is the smallest crack set containing all prior discon-
tinuities of u. Instead, we only require the inclusion of discontinuity sets, namely,
that up to sets of HN−1 measure zero,

S(u(τ )) ⊂ C(t) ∀τ ∈ [0, t].
We will present two approaches to the second issue, organized in this paper

as follows. In Section 5, we will constrain the admissible trajectories to prevent
mother-daughter type microstructures and ensure compactness of our constrained
class. The corresponding variational problem is analyzed in a two dimensional
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setting, finally showing the existence of an optimal crack path (Theorem 5.2). In
Section 6 we allow such microstructures generally, in N dimensions and without
constraints on admissible trajectories, which requires relaxation. We will show that
the mother–daughter mechanism is only part of the picture, and in fact minimizing
sequences will employ a front microstructure that enables them to move at an ener-
getically optimal front speed, which depends only on the function ψ . We thereby
show that, remarkably, any energy whose dissipation rate is of the form∫

F(t)
ψ(v)dHN−2

relaxes to an energy whose dissipation rate is proportional to the front speed,
that is, a rate-independent dissipation, and so also a Griffith energy dissipation
(Theorem 6.13).

Perhaps the most natural example for which we would not have expected relax-
ation to a rate-independent dissipation is ψ(v) = α + v p, giving the energy

Iε[u,C]=
∫ T

0
e− t

ε

{
1

ε

∫
�

W (∇u(x, t))dx+
∫

F(t)

(
α + v p(x, t)

)
dHN−2(x)

}
dt,

(3)

with α > 0 and p > 1. While it would seem that having a fixed penalty on the front
size and a superlinear penalty on the front speed would prevent microstructure, let
alone relaxation to rate-independence, the relaxation result of Theorem 6.13 shows
that this is not the case.

We conclude with two remarks about our results. First, we note that this front-
based approach can be incorporated into the discrete time, crack increment formu-
lation for quasi-static crack growth (see Remark 3.1 below). Also, our relaxation
proof is unnecessarily strong, in the sense that given any trajectory (u,C), we build
optimal approximations (un,Cn) such that for a sequence of discrete times {tn

i }
with (tn

i+1 − tn
i ) → 0, C(tn

i ) ⊂ Cn(t) ⊂ C(tn
i+1) for t ∈ [tn

i , tn
i+1]. Similarly,

un(t) = u(tn
i ) for t ∈ [tn

i , tn
i+1).

2. Minimum principles for rate problems in mechanics

Many physical systems are governed by problems of the rate form. Thus, let
u ∈ Y be a field that describes the state of the system, where Y is the corre-
sponding configuration space. For the systems under consideration, the trajectory
u : (0, T ) → Y over a time interval (0, T ) is governed by the problem:

u(0) = u0 (4a)

u̇(t) = v(t) (4b)

v(t) ∈ argmin{G(t, u(t), v(t))} (4c)

where u̇(t) is the time derivative, or rate, of u at time t ; u0 ∈ Y is the initial state
of the system; and G : (0, T ) × Y × Y → R̄ is a rate functional. Problem (4)
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entails a sequence of minimum problems parameterized by time. For every time,
the minimum problem (4c), or rate problem, returns the rate v(t) corresponding to
the known state u(t). Integration of these rates in time then determines the evolution
of the system.

A special example of rate problem (4c) arises in evolutionary problems gov-
erned by rate equations of the form

0 ∈ ∂�(u̇(t))+ DE(t, u(t)), (5a)

u(0) = u0, (5b)

where � : Y → R∞ := R∪{∞} is a convex dissipation potential; E : Y → R∞
is an energy function; ∂� is the subdifferential of �, representing the system of
dissipative forces; DE is the Fréchet derivative of E , representing the conservative
force system; and time t varies in the interval [0, T ]. Equation (5a) establishes a
balance between dissipative forces and conservative forces, and the trajectory u(t)
of the system is the result of this balance and of the initial condition (5b). In this
particular case, the rate functional takes the additive form

G(t, u(t), v(t)) = �(v(t))+ DE(t, u(t))v(t). (6)

Whereas for fixed time the rate of evolution of the system is characterized
variationally by the rate problem (4c), the trajectories of the system lack an obvi-
ous variational characterization. Specifically, the lack of a minimum principle of
trajectories forestalls the application of relaxation, gamma convergence, and other
methods of the calculus of variations to the determination of the effective energetics
and kinetics of systems exhibiting evolving microstructures.

Mielke and Ortiz [9] have proposed a class of variational principles for tra-
jectories that addresses this difficulty. The fundamental idea is to string together
the minimum problems (4c) for different times into a single minimum principle.
In order to ensure causality, the rate problems corresponding to earlier times are
given overwhelmingly more weight than the rate problems corresponding to later
times. This leads to the consideration of the family of functionals

Fε(u) =
∫ T

0
e−t/εG(t, u(t), u̇(t)) dt (7)

and to the minimum principles

inf
u∈X

Fε(u) (8)

where X is a space of functions from (0, T ) to Y , or trajectories, such that u(0) =
u0. We shall refer to Fε as the energy-dissipation functional to acknowledge the
fact that Fε accounts for both the energetics and the dissipation characteristics
of the system. For additive problems of the form (5), an alternative form of the
energy dissipation functional can be obtained through an integration by parts of the
dissipation term, with the result

Fε(u) =
∫ T

0
e−t/ε

[
�(u̇)+ 1

ε
E(u)

]
dt (9)

up to inconsequential additive constants.
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That the causal limit ε → 0 of (8) is equivalent to problem (4) can be established
formally from the Euler–Lagrange equations of Fε . Thus, the Euler–Lagrange equa-
tion of (4c) is, simply,

∂vG(t, u, v) = 0 (10)

whereas the Euler–Lagrange equations of (8) are:

∂u̇G(t, u(t), u̇(t))+ ε

{
∂uG(t, u(t), u̇(t))− d

dt
∂u̇G(t, u(t), u̇(t))

}
= 0 (11)

A comparison of (10) and (11) reveals that, disregarding higher-order terms in ε,
the minimizers u(t) of (8) are such that u̇(t) solves the rate problem (4c) at all times.
The Euler–Lagrange equation (11) may also be regarded as an elliptic regulariza-
tion of problem (4) [9]. Thus, depending on the size of ε the system is allowed to
peep into the future to a greater or lesser extent. In the same manner as the term rate
problem is used to denote the problem that determines rates, namely problem (4c),
we shall use the term trajectory problem to refer to the problem that determines the
trajectories of the systems, namely problem (8).

A class of problems that is amenable to effective analysis concerns rate-
independent systems for which the dissipation potential� is homogeneous of degree
1 [9]. A striking first property of rate-independent problems is that all minimizers
uε of Fε satisfy energy balance independently of the value of ε. Under suitable
coercivity assumptions it is then possible to derive a priori bounds for uε which
likewise are independent of ε, with the result that it is possible to extract convergent
subsequences and find limiting functions u. Under certain regularity assumptions,
it follows that all such limits satisfy the energetic formulation of Mielke et al. (see,
for example, the survey [8] and references therein) for rate-independent systems
of the form (5). Moreover, if (�k)k∈N converges to � and Ek 	-converges to E
with respect to appropriate topologies, then the accumulation points of the family
(uε,k)ε>0,k∈N for ε, 1/k → 0 solve the associated limiting energetic formulation.
These results for rate-independent systems provide a first indication that the var-
iational program outlined above indeed works, that is, that the minimizers of the
energy-dissipation functionals Fε converge towards trajectories of the evolutionary
problem. The case of a general rate functional G remains open at present.

3. Fracture mechanics as a rate problem

Fracture is irreversible, dissipative and is driven by energetic driving forces,
which suggests that it should be describable within the energy-dissipation frame-
work outlined in the preceding section. However, whereas the energy of a body
undergoing fracture is simply given by its elastic energy, the dissipation attendant
to crack growth is concentrated on the crack front and its proper accounting requires
carefully crafted measure-theoretical tools. Before embarking on the development
of those tools, we begin by briefly recounting the elements of formal fracture
mechanics that lead to the formulation of dissipation potentials for growing cracks.
We therefore proceed formally and assume regularity and smoothness as required.
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We consider an elastic body occupying a domain � ⊂ R
N , N � 2. The

boundary ∂� of the body consists of an exterior boundary 	, corresponding to the
boundary of the uncracked body, and a collection of cracks jointly defining a crack
set C . In addition, 	 partitions in the usual manner into a displacement boundary
	1 and a traction boundary 	2. The body undergoes deformations under the action
of body forces, displacements prescribed over 	1 and tractions applied over 	2.
Under these conditions, the elastic energy of the body is

E(u) =
∫
�

W (x, u,∇u)dx +
∫
	2

V (x, u) dHN−1 (12)

where dx is the N -dimensional Lebesgue measure, Hd is the d-dimensional Haus-
dorff measure, W is the elastic strain energy density of the body and V is the
potential of the applied tractions. Suppose now that the applied loads and prescribed
displacements are incremented over the time interval [t, t+
t] and that, in response
to this incremental loading, the crack set extends from C(t) to C(t +
t). Owing
to the irreversibility of fracture, we must necessarily have that C(t) ⊂ C(t +
t).
The elastic energy released during the time increment is

−
E =
[∫

�

W (x, u(t),∇u(t)) dx +
∫
	2

V (x, u(t)) dHN−1
]

−
[∫

�

W (x, u (t +
t) ,∇u(t +
t)) dx

+
∫
	2

V (x, u(t +
t)) dHN−1
]
. (13)

Expanding to first order in all incremental terms, we obtain

−
E ∼ −
[∫

�

(∂u W ·
u + ∂∇u W · ∇
u) dx +
∫
	2

∂u V ·
u dHN−1
]
.

(14)

Integrating by parts and using the equations of equilibrium, we find that this expres-
sion reduces to

−
E ∼
∫

C

T (t) · [[u(t +
t)]] dHN−1 (15)

where

T = ∂∇u W (x, u,∇u) n (16)

are the internal tractions, with n the unit outward normal to the boundary, and we
write 
C = C(t +
t)\C(t), Fig. 1a. The corresponding energy release rate now
follows as

− Ė = − lim

t→0


E


t
=
∫

F
f (n)v dHN−2 (17)
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Fig. 1. a Crack advancing in a body occupying domain� and zoom of the crack-front region
showing crack set Ct at time t , contained with crack set Ct+
t at time t +
t , during which
interval of time the crack front sweeps an area 
C of unit normal n. b Detail of advancing
front and definition of front velocity

where F is the crack front, Fig. 1b, v is the crack-front velocity

f (n) = lim

t→0

1


t
(∂∇u W n) · [[ut+
t ]] (18)

is the energetic force acting on the crack front. The identity (17) expresses the rate
at which energy flows to—and is subsequently dissipated at—the crack front. In
particular, the duality-pairing structure of (17) is conventionally taken to mean that
the energetic force f (n) does power, or drives on the crack-front velocity v. On this
basis, it is customary in fracture mechanics to postulate the existence of a crack-tip
equation of motion of the form

f = ∂ψ(v) (19)

where ψ is a dissipation potential density per unit crack-front length. The total
dissipation potential for the entire crack front finally follows by additivity as

�(v) =
∫

F
ψ(v) dHN−2 (20)

We note that constitutive relations of the form (19) can also be derived—instead of
just postulated—from (17) and the first and second laws of thermodynamics using
Coleman and Noll’s method [3]. The crack-tip equation of motion (19) is subject
to the dissipation inequality

f · v � 0 (21)

which follows as a consequence of the second law of thermodynamics. In the present
context, the dissipation inequality introduces a unilateral constraint that prevents
crack healing.

We note that the dissipation attendant to crack growth is localized to the crack
front F , which is a set of co-dimension 2. This is in contrast to energetic theories of
fracture based on the SBV or SBD formalisms in which the principal singular set of
interest, namely, the crack set, has co-dimension 1. In geometrical measure theory
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Fig. 2. a Compilation of fatigue data for 2024-T3 aluminum alloy [10]. b Dynamic fracture
data for 4340 steel [11]. The driving force f scales as the square of the stress-intensity factor.
By plotting the driving force versus crack-tip velocity on log–log axes, we find that all the
data points collapse on master curves

the structure and properties of sets of co-dimension 2 is less well understood than
those of sets of co-dimension 1, which adds difficulty to the energy-dissipation
version of fracture mechanics. We also note that in rate-independent theories of
fracture mechanics the dissipation is described by a surface energy on the crack
flanks and lumped together with the energy.

The observational record lends support to the assumption that crack growth
obeys a crack-tip equation of motion of the form (19). By way of example, Fig. 2
shows a compilation of fatigue data for 2024-T3 aluminum alloy from the classical
work of Paris and Erdogan [10] and dynamic fracture data for 4340 steel [11]. In
the case of fatigue, the number N of loading cycles plays the role of time. In inter-
preting these data it should also be recalled that in linear-elastic fracture mechanics
the driving force f scales as the square of the stress-intensity factor. By plotting the
driving force versus crack-tip velocity on log–log axes, one finds that all the data
points ostensibly collapse on master curves, suggesting the existence of a crack-tip
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Fig. 3. Local view of the geometry and kinetics of crack advance

equation of motion. The data displayed in Fig. 2 are also suggestive of power-law
behavior, possibly with a threshold on the driving force. Thus, with the direction
of advance prescribed, for example, by symmetry, the component of the crack-tip
equation of motion normal to the front within the tangent plane to the crack takes
the form

v = C( f − f0)
m (22)

where the threshold f0 � 0, C and m are material constants. If the rate of dissipa-
tion is further assumed to be independent of the direction of crack advance, then
the dissipation potential follows as

ψ(v) = f0|v| + mC

m + 1
|v|1+1/m (23)

We are now in a position to formulate the rate problem (5) for fracture mechan-
ics. In view of identity (17), the rate problem of fracture mechanics reduces to

inf
v,n

∫
F
[ψ(v)− f (n) · v] dHN−2 (24)

and the corresponding Euler–Lagrange equations are

∂ψ(v) = f (n) (25a)

∂ψ∗( f (n)) = 0 (25b)

which jointly determine the crack-tip velocity v and direction of advance n. The
resulting geometry and kinetics of crack advance are illustrated in Fig. 3, that repre-
sents a local neighborhood of the crack front, for example, parametrized by its arc
length s, with the local crack geometric described by orthonormal axes tangent to
the crack and its front. Because of the constraint C(t) ⊂ C(t +
t), it follows that
the direction of crack advance can locally be described by means of a single kinking
angle ω(s). Also, because of the constraint (25b) reduces to one single equation
for the determination of ω(s). We note from (24) that the resulting kinking angle
maximizes the energy-release rate or, equivalently, the rate of dissipation f (n) · v,
and thus we can regard (24) variously as a maximum energy-release or a maximum
dissipation principle. Once ω(s), and by extension n(s), is determined from (25b)



Fracture Paths from Front Kinetics 549

Fig. 4. Dual dissipation density as a function of kinking angle for steady-state dynamic
crack growth at different crack tip velocities. The dual energy-dissipation density has a sin-
gle maximum below a critical crack-tip velocity, corresponding to straight-ahead growth,
and two maxima above the critical velocity, corresponding to crack branching [12]

the local crack-front velocity v(s), giving the rate of extension of the crack, follows
from (25a), which simply restates the crack-tip equation of motion (Fig. 4).

The energy-dissipation functional (24) can exhibit complex behavior. A case
in point is furnished by a dynamic two-dimensional crack propagating in a steady
state. In this case, an equivalent static problem can be obtained by introducing a
reference frame that moves with the crack tip, and the equivalent static problem
thus defined can be analyzed within the energy-dissipation framework just out-
lined. A classical solution of Yoffe [12] then shows that for crack-tip velocities
below a certain critical speed vc of the order of 60% of the shear wave speed (25b)
has a single solution and the crack runs straight ahead. By way of sharp contrast,
above the critical speed (25b) has two symmetrical solutions corresponding to kink-
ing angles of the order of ±65◦ corresponding to crack branching. In the present
variational framework, this classical branching instability of dynamic fracture can
thus be understood as a consequence of the lack of convexity of the rate problem,
which furnishes a new insight into the phenomenon and opens opportunities for the
analysis of crack branching.

On the basis of preceding description of the energetics and dissipation of
fracture, we can now exhibit the energy dissipation functional (9) of fracture
mechanics, namely,

Fε(u) =
∫ T

0
e−t/ε

[∫
F
ψ(v) dHN−2

+ 1

ε

(∫
�

W (x, u,∇u) dx +
∫
	2

V (x, u) dHN−1
)]

dt.

(26)
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Minimization of this energy-dissipation functional supplies the entire crack-path
over the time interval [0, T ] and the attendant trajectory of the displacement field.
The energy-dissipation functional (26) forms the basis of the analysis presented in
the remainder of the paper.

Remark 3.1. We close this section by noting that this front-based variational model
can also be used in the discrete-time incremental approach, by considering for crack
increments 
C in the time interval [t1, t2] the crack energy

inf

{
lim inf
n→∞

∫ t2

t1

∫
Fn

ψ(vn) dHN−2 dt : Cn → 
C

}

where Fn is the front corresponding to Cn and the convergence Cn → 
C is in the
sense described in Section 6. Remarkably, as a consequence of the results in that
section (see Remark 6.11 and Theorem 6.12), this inf is simply

inf

{
lim inf
n→∞

∫ t2

t1

∫
Fn

C vn dHN−2dt : Cn → 
C

}
= C HN−1(
C), (27)

where

C := inf
s∈(0,∞)

ψ(s)

s
.

4. Notation and mathematical setting

We first introduce some notation to be used throughout the paper, which is
consistent with [5].

• �, a bounded open subset of R
N with Lipschitz boundary, represents the refer-

ence configuration of the body. As a mechanism for enforcing boundary con-
ditions (see for instance [6]), �′ will denote a bounded open set with Lipschitz
boundary such that � ⊂⊂ �′.

• For y ∈ R
N , let (y1, . . . , yN ) denote the components of y.

• For n = 0, . . . , N Ln is the n-dimensional Lebesgue measure and Hn denotes
the n-dimensional Hausdorff measure.

• SBV (�) is the space of special functions of bounded variation on �. For
u ∈ SBV(�), we will denote the approximate discontinuity set of u as S(u) (see
[2]). SBVp(�) will denote those u ∈ SBV(�) such that ∇u ∈ L p(�).

• We will say that a sequence {vn}∞n=1 ⊂ SBV(�) converges to v ∈ SBV(�) (or

vn
SBV→ v) if

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∇vn ⇀ ∇v in L1(�);

[vn]νnHN−1�S(vn)
∗
⇀ [v]νHN−1�S(v) as measures;

vn → v in L1(�); and

vn
∗
⇀ v in L∞(�),
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where ν denotes the normal to S(v), and [v] the jump of v. Note that, as a
consequence (see [1]),

HN−1(S(v)) � lim inf
n→∞ HN−1(S(vn)) (28)

whenever vn
SBV→ v.

• For any set of finite perimeter E , ∂∗E denotes the reduced boundary of E and
for x ∈ ∂∗E νE (x) denotes the measure theoretic outer normal to E at x .

• For ξ ∈ R, let Ewξ denote the ξ super level set of w, that is, Ewξ := {x ∈ � :
w(x) > ξ}.

• For {Ki }∞i=1, Ki ⊂ R
2, we use the notation K = H-lim

i→∞ Ki or Ki
H→ K to mean

that Ki converges to K in the Hausdorff metric.

• A
∼⊂ B means that HN−1(A\B) = 0. A

∼= B means HN−1(A
B) = 0.
• 2X denotes the power set of X .
• Q(x, r) is a cube in R

N centered at x with side length 2r .
• B(x, r) is a closed ball centered at x with radius r .
• W : R

N → R is convex with minimum attained for ξ ∈ R
N with ‖ξ‖

R
N = 0

and satisfies C1|ξ |p − 1

C1
� W (ξ) � C2(|ξ |p + 1) for some positive constants

C1,C2 and some p > 1.

5. Existence for constrained trajectories

In this section, we present an existence result for a constrained version
of the problem that we introduced in Section 1. We are restricting our consid-
eration to the two dimensional case (� ⊂ R

2), and, motivated by the compactness
issues for the class of trajectories that satisfy (1) (see Section 1), we define a class
of constrained trajectories:

Definition 5.1. For fixed p′ > 0, the class Tp′ is the set of triples (u,C, F) such
that:

1. u satisfies:
(a) u(·, t) ∈ SBVp(�

′) ∀t ∈ [0, T ]
(b)

∫
�

W (∇u(x, ·))dx ∈ L1([0, T ]; R)

(c) ∀t ∈ [0, T ], u(·, t) = g on �′\�̄, where g ∈ L∞(�′) ∩ H1(�′) is given.
2. C : [0, T ] → {

K ⊂ �̄ : K is H1 measurable, H1 (K ) < ∞} such that:

(a) C(0)
∼= C0, for given C0

(b) C nondecreasing: ∀τ < t , C(τ )
∼⊂ C(t)

(c) ∀t ∈ [0, T ], S(u(t))
∼⊂ C(t)

(d) F ∈ W 1,p′
([0, T ]; �̄), and there exists a family of functions v(·, t) :

F(t) → R, such that∫ T

0
ϕ̇(t)

∫
C(t)

f (x)dH1(x)dt = −
∫ T

0
ϕ(t)

∫
F(t)

f (x)v(x, t)dH0(x)dt

∀ϕ ∈ C1
0([0, T ]),∀ f ∈ C0(�

′).
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Property 2 expresses the fact that we are considering a relaxed definition of
crack set, as discussed in the introduction. By Property 2d, we are only considering
those trajectories that satisfy the front representation, and further that their fronts are
at most one point ∀t ∈ [0, T ] with no jumps in the position of this front. Since the
class of trajectories that have a one point front moving continuously is not closed,
we allow the front point to move inside of the existing crack set (with v = 0).
Therefore, we can choose F ∈ W 1,p′

([0, T ], �̄) such that at every t ∈ [0, T ],
the front at time t is a subset of F(t). We will consider a dissipation potential of
a similar character to (23), in particular we require superlinear growth of the dis-
sipation potential. However, since F can move inside of the existing crack set, a
sequence {qi }∞i=1 ⊂ Tp′ will have a subsequence that converges to an element of
Tp′ only if sup

i

∥∥Ḟi
∥∥

L p′ is bounded; therefore, in order to ensure compactness, we

must penalize the derivative of F in the functional. Accordingly, we will minimize

Iε,p′ [q] :=
∫ T

0
e− t

ε

{
1

ε

∫
�

W (∇u(x, t))dx +
∫

F(t)

∣∣Ḟ∣∣p′
(t)dH0(x)

}
dt

over q = (u,C, F) ∈ Tp′ , where ε > 0 and p′ > 1 are fixed. Note that the proof
of Theorem 5.2 below applies to all convex potentials with p′ growth, in particular
for |Ḟ | + |Ḟ |p′

, as in (23). Since F(t) is only one point, the energy is simply

Iε,p′ [q] :=
∫ T

0
e− t

ε

{
1

ε

∫
�

W (∇u(x, t))dx + ∣∣Ḟ∣∣p′
(t)

}
dt.

Theorem 5.2. There exists a minimizer of Iε,p′ in Tp′ .

Proof. Let {qi }∞i=1 ⊂ Tp′ be a minimizing sequence for Iε,p′ , meaning

lim
i→∞ Iε,p′ [qi ] = inf

q∈Tp′
Iε,p′ [q].

This implies that

sup
i

∥∥Ḟi
∥∥

L p′
([0,T ];R2)

< ∞. (29)

Since p′ > 1, then by (29), Theorem 1 in Section 4.6 of [5], and Morrey’s inequality
(Theorem 3 in Section 4.5.3 of [5]) there is an F ∈ W 1,p′

([0, T ]; �̄) such that, up
to a subsequence that we will not relabel,

Fi → F in L∞([0, T ]; �̄) and (30)

Ḟi ⇀ Ḟ in L p′
([0, T ]; R

2). (31)

Note that (31) implies the following:

∫ T

0
e− t

ε

∣∣Ḟ∣∣p′
(t)dt � lim inf

i→∞

∫ T

0
e− t

ε

∣∣Ḟi
∣∣p′
(t)dt. (32)
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Set C(t) := C0 ∪ ⋃τ�t F(τ ) and C̃i (t) := C0 ∪ ⋃τ�t Fi (τ ). Since Fi → F

uniformly then ∀t ∈ [0, T ] C̃i (t)
H→ C(t). Construct u : � × [0, T ] → R as

follows: ∀t ∈ [0, T ], take

u(·, t)∈ argmin

{∫
�

W (∇z)dx : z ∈ SBV (�), S(z)
∼⊂ C(t), z = g in �′\�

}
,

(33)

which is nonempty by the properties of W and the compactness of the space SBV
(Theorems 4.7 and 4.8 of [2]).
Let q := (u,C, F) as defined above. We will now show that q ∈ Tp′ , and that it is
a minimizer of Iε,p′ . First, note that properties 1a, 1c, 2a, 2b, and 2c hold for q by
construction. Also, since C is nondecreasing, the map

t �→
∫
�

W (∇u(x, t))dx

is nonincreasing, is continuous almost everywhere and therefore L1 measurable.
This, combined with the lower semicontinuity of the bulk part of the energy means
that property 1b is satisfied.

Next, we verify that the pair (C, F) satisfies property 2d of the definition of
Tp′ . Choose a sequence {ηk}∞k=1 ⊂ C∞([0, T ]; �̄) such that ηk → F strongly

in W 1,p′
([0, T ]; �̄) (see Section 4.2 Theorem 3 of [5]). Then Morrey’s inequality

(Section 4.5.3 Theorem 3 of [5]) implies

ηk → F strongly in L∞([0, T ]; �̄).

Let 	k(t) := ⋃
τ�t ηk(τ ). According to the Area formula (Theorem 1 in

Section 3.3.2 in [5]) we have ∀k ∈ N and t < t ′ ∈ [0, T ]
∫ t ′

t
|η̇k | dt =

∫
�̄

H0
(
[t, t ′] ∩ η−1

k ({y})
)

dH1(y)

� H1(	k(t
′)\	k(t)). (34)

Using the uniform convergence ηk → F (in particular that ∀t ∈ [0, T ] 	k(t)
H→

C(t)\C0) and the fact that 	k(t) connected, we have for all t < t ′ ∈ [0, T ]

H1(C(t ′)\C(t)) � lim inf
k→∞ H1 (	k(t

′)\	k(t)
)

� lim
k→∞

∫ t ′

t
|η̇k | (s)ds

=
∫ t ′

t

∣∣Ḟ∣∣ (s)ds. (35)
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Using (35), we have that for any f ∈ C0(�
′) and all t < t ′ ∈ [0, T ],

∣∣∣∣
∫

C(t ′)
f dH1 −

∫
C(t)

f dH1
∣∣∣∣ =

∣∣∣∣
∫

C(t ′)\C(t)
f dH1

∣∣∣∣
� ‖ f ‖L∞(�′)H1(C(t ′)\C(t))

� ‖ f ‖L∞(�′)

∫ t ′

t

∣∣Ḟ∣∣ (s)ds. (36)

The estimate (36) means that, for every f ∈ C0(�
′), the map

t �→
∫

C(t)
f (x)dH1(x) (37)

is absolutely continuous, and so there exists D f ∈ L1([0, T ]; R) such that

∫ T

0
ϕ̇(t)

∫
C(t)

f (x)dH1(x)dt = −
∫ T

0
ϕ(t)D f (t)dt (38)

for all ϕ ∈ C1
0([0, T ]; R). In particular, taking f ≡ 1 in �̄ there is a

D ∈ L1([0, T ]; R) such that
∫ T

0
ϕ̇(t)H1(C(t))dt = −

∫ T

0
ϕ(t)D(t)dt

for all ϕ ∈ C1
0([0, T ]; R). Since for any f ∈ C0(�

′) with ‖ f ‖L∞(�′) � 1 the map

t �→ H1(C(t))−
∫

C(t)
f (x)dH1(x)

is nondecreasing, for any f ∈ C0(�
′) one can show that there is a representative

of D f , denoted D∗
f , so that for all t ∈ [0, T ]

1

‖ f ‖L∞(�′)
D∗

f (t) � D(t) < ∞

and for almost every t ∈ [0, T ] the map f → D∗
f (t) is a bounded linear map on

C0(�
′). By the Riesz representation theorem (Theorem 1 in Section 1.8 of [5]),

there exists a family of measures {µt }t∈[0,T ] such that for all f ∈ C0(�
′)

D f (t) =
∫
�

f (x)dµt (x) (39)

at almost every t ∈ [0, T ]. Hence,
∫ T

0
ϕ̇(t)

∫
C(t)

f (x)dH1(x) dt = −
∫ T

0
ϕ(t)

∫
�′

f (x)dµt (x)dt, (40)

for all ϕ ∈ C1
0([0, T ]; R) and f ∈ C0(�

′; R). Now, we show that for almost every
t ∈ [0, T ], the measure µt is supported on F(t). Since F ∈ W 1,p′

([0, T ]; �̄),
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p′ > 1, F is uniformly continuous on [0, T ]. For each n ∈ N choose δn > 0 so
that for a, b ∈ [0, T ] with |a − b| < δn , |F(a)− F(b)| < 1/(2n). Fixing an n ∈ N,
choose a finite set of open intervals {(ak, bk)}z

k=1 such that

0 < |bk − ak | < δn ∀k,

and

L1

(
[0, T ]\

⋃
k

(ak, bk)

)
= 0.

Fix k and then choose some tk ∈ (ak, bk). Set

B := B(F(tk), 1/(2n)).

For any t ∈ (ak, bk), C(t)\C(ak) ⊂ B, which means

C(t)\B = C(ak)\B

and so for all f ∈ C0(�
′\B)

d

dt
(C(t)\B) = 0

for almost every t ∈ (ak, bk). Thus, by (40), for any f ∈ C0(�
′\B) and almost

every t ∈ (ak, bk) ∫
�′

f (x)dµt (x) = 0,

and so for almost every t ∈ (ak, bk)

µt (�
′\B) = 0. (41)

By the choice of the diameter of B, we know that for every t ∈ (ak, bk)

B ⊂ B(F(t), 1/n)

and so for almost every t ∈ (ak, bk)

µt
(
�′\B(F(t), 1/n)

)
� µt

(
�′\B

)
= 0.

Repeating this argument for each k, and setting

Gn := {t ∈ [0, T ] : µt (�\B(F(t), 1/n)) > 0} ,
we have that

L1(Gn) = 0

for all n ∈ N and so the set

G := {t ∈ [0, T ] : µt (�\F(t)) > 0}
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has zero measure. This means that for t ∈ [0, T ]\G

µt << H0�F(t),

and setting

v(x, t) := dµt

dH0�F(t)
(x)

we apply (40) to find

∫ T

0
ϕ̇(t)

∫
C(t)

f (x)dH1(x)dt = −
∫ T

0
ϕ(t)

∫
F(t)

f (x)v(x, t)dH0(x)dt

(42)

for all ϕ ∈ C1
0([0, T ]; R) and f ∈ C0(�

′; R). Therefore the triple q = (u,C, F)
satisfies property 2d of the definition of Tp′ . ��
It remains only to show the lower semicontinuity of the bulk part of the energy. We
will use this claim about our sequence ui and the C constructed above:

Claim. Suppose that for some w ∈ SBV (�), ui (·, t)
SBV→ w. Then S(w)

∼⊂ C(t).

Proof of Claim. Recall that C̃i (t)
H→ C(t). Now let x0 ∈ �′\C(t). Since C(t) is

closed, there exists t∗ ∈ [0, t] such that

D := dist(F(t∗), x0) = min
s∈[0,t] dist(F(s), x0)) > 0.

Set

B := B(x0, D/2).

Then there exists N ∈ N such that ∀i > N

C̃i (t) ∩ B = ∅.
By definition of C̃i , and since for each i the pair (Ci , Fi ) satisfies the front repre-
sentation formula with a front speed vi , for any f ∈ C0(B) and i > N

∫
Ci (t)

f (x)dH1(x) =
∫ t

0

∫
Fi (s)

f (x)vi (x, s)dH0(x)ds

=
∫ t

0

∫
Fi (s)∩B

f (x)vi (x, s)dH0(x)ds

= 0. (43)

Then (43) implies

H1(Ci (t) ∩ B) = 0
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for i > N . By property 2c of Definition 5.1, we have

H1(S(ui (t)) ∩ B) = 0

for i > N . Therefore, applying (28) with ui |B and w|B we have that

H1(S(w) ∩ B) � lim inf
i→∞ H1(S(ui (t)) ∩ B) = 0.

Since the above argument holds for any ball with radius less than D/2, and since x0
was arbitrary, this proves the claim.

Now, to show that the bulk energy is lower semicontinuous, fix t ∈ [0, T ]. Take
a subsequence of {ui }∞i=1 such that:

lim
k→∞

∫
�

W (∇uik (x, t))dx = lim inf
i→∞

∫
�

W (∇ui (x, t))dx .

We can assume, without loss of generality, that supk ‖uik (t)‖L∞ < +∞ since
truncation merely lowers the elastic energy. By the compactness of the space of
SBV (Theorem 4.8 of [2]), there exists ūt ∈ SBV (�) such that, up to a further
subsequence that we will not relabel,

uik

SBV→ ūt .

By the above claim

S(ūt )
∼⊂ C(t),

and so applying the definition of u (recall (33)), we have∫
�

W (∇u(x, t))dx �
∫
�

W (∇ūt (x, t))dx .

Therefore, ∫
�

W (∇u(x, t))dx �
∫
�

W (∇ūt (x, t))dx

� lim
k→∞

∫
�

W (∇uik (x, t))dx

= lim inf
i→∞

∫
�

W (∇ui (x, t))dx .

Since the above holds for each t ∈ [0, T ], then the lower bound on W and Fatou’s
Lemma (see [2]) implies:∫ T

0
e− t

ε

∫
�

W (∇u(x, t))dx dt �
∫ T

0
e− t

ε

{
lim inf

i→∞

∫
�

W (∇ui (x, t))dx

}
dt

� lim inf
i→∞

∫ T

0
e− t

ε

∫
�

W (∇ui (x, t))dx dt.

(44)

Combining (32) and (44) gives

Iε,p′ [q] � lim inf
i→∞ Iε,p′ [qi ],

which establishes that the triple q = (u,C, F) is a minimizer of Iε,p′ . ��
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6. Relaxation and rate-independence

For energies of the form

Iε[q] :=
∫ T

0
e− t

ε

{
1

ε

∫
�

W (∇u(x, t))dx +
∫

F(t)
ψ(v(x, t))dHN−2(x)

}
dt,

(45)

(where q ∈ T , ε > 0 is fixed, andψ : [0,∞) → [0,∞) is continuous) minimizing
sequences can exhibit the onset of microstructures that involve the geometry of the
crack front, which prevents the existence of a minimizer without strong restrictions
on that geometry (see Section 5). In this section we will characterize the optimal
crack front microstructure and prove a formula for the relaxation of the dissipa-
tion part of energies of the form (45) (see Theorem 6.13). This result holds in
any dimension and without a priori constraints on the crack fronts. This section is
organized as follows. Section 6.1 contains the definition for the appropriate class of
fracture trajectories and other definitions useful for the remainder of Section 6. In
Section 6.2 we describe the notion of convergence for which we prove the relaxa-
tion result- this convergence is extremely weak and thus the result of Theorem 6.13
holds in practical settings. Section 6.3 contains Theorem 6.13 and its proof.

6.1. Definitions

Definition 6.1. The class T is the set of pairs (u,C) such that:

1. u satisfies:
(a) u(·, t) ∈ SBVp(�

′) ∀t ∈ [0, T ]
(b)

∫
�

W (∇u(x, ·))dx ∈ L1([0, T ]; R)

(c) ∀t ∈ [0, T ], u(·, t) = g on �′\�̄, where g ∈ L∞(�′) ∩ H1(�′) is given

2. C : [0, T ] →
{

K ⊂ �̄ : K is HN−1 measurable, HN−1 (K ) < ∞
}

is such

that:
(a) C(0)

∼= C0, for given C0

(b) C nondecreasing: ∀τ < t , C(τ )
∼⊂ C(t)

(c) ∀t ∈ [0, T ], S(u(t))
∼⊂ C(t)

(d) There exists a function F : [0, T ] → 2� and a family of functions v(·, t) :
F(t) → R such that
∫ T

0
ϕ̇(t)

∫
C(t)

f (x)dHN−1(x)dt =−
∫ T

0
ϕ(t)
∫

F(t)
f (x)v(x, t)dHN−2(x)dt

∀ϕ ∈ C1
0([0, T ]),∀ f ∈ C0(�

′).

Definition 6.2. Define the space T ∗ to be the set of all pairs (u,C) that satisfy the
properties of T except for property 2d.

Remark 6.3. Note that an alternative to 2b in Definition 6.1 is that v in 2d satis-
fies v � 0. A similar characterization is possible for q ∈ T ∗, requiring the weak
derivative of HN−1�C(t) to be nonnegative.
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Definition 6.4. Define the rate independent envelope of ψ , ψ̄ : [0,∞) → [0,∞)

by

ψ̄(x) := sup
φ�ψ

φ linear

φ(x).

And, setting

C := inf
s∈(0,∞)

ψ(s)

s
,

we have for s ∈ [0,∞)

ψ̄(s) = C s.

6.2. Convergence in T ∗

6.2.1. Sketch of compactness argument An important feature of the choice of
convergence is that minimizing sequences of (45) are compact. To motivate our
choice of convergence, we will briefly sketch the compactness argument for ener-
gies of this form. Let D be a countable, dense subset of [0, T ], and suppose that
ψ has this property: there exists a constant K1 > 0 such that, for s ∈ [0,∞), ψ
satisfies

ψ(s) � K1s. (46)

The, let {qi = (ui ,Ci )}∞i=1 ⊂ T be a minimizing sequence of Iε . This implies that
the sequence has bounded energy, that is, there exists K2 > 0 such that

sup
i

Iε[qi ] < K2. (47)

We now show that there is a q = (u,C) ∈ T ∗ such that up to a subsequence

ui (·, t)
SBV→ u(·, t)

for all t in the countable dense D ⊂ [0, T ]. To see this, we suppose that the
minimizing sequence {qi }∞i=1 has the property that for all i ∈ N and each t ∈ [0, T ]

ui (·, t)∈ argmin

{∫
�

W (∇z)dx : z ∈ SBV (�), S(z)
∼⊂ Ci (t), z =g in �′\�

}
,

since this can only reduce Iε[qi ]. Then, by the growth bounds on W , supi∈N

‖∇ui (·, t)‖L p(�) is bounded uniformly for t ∈ [0, T ], where p > 1. We also
assume that our minimizing sequence is chosen so that

sup
i∈N

‖ui (·, t)‖L∞(�′) � ‖g‖L∞(�′) ,

which, by a truncation argument, can only lower the bulk energy. Now, by (47), we
have
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∫ T

0
e− t

ε

∫
Fi (t)

ψ(vi )dHN−2 dt < K2,

which combined with (46) and property 2d of the definition of T means that there
is a K3 > 0 such that

HN−1(Ci (T )) =
∫ T

0

∫
Fi (t)

vi (x, t)dHN−2(x)dt

< e− T
ε K3. (48)

Then, by the compactness of the space SBV (�′) (Theorems 4.7 and 4.8 of [2]),
for each t ∈ D there is an SBV function ut such that, up to a subsequence that is
not relabeled,

ui (·, t)
SBV→ ut .

For t ∈ D , define u(·, t) := ut , and since D is countable, we apply a diagonal
argument to show that up to a subsequence,

ui (·, t)
SBV→ u(·, t) (49)

for all t ∈ D . Define, for t ∈ D ,

C(t) :=
⋃
τ∈D

τ�t

S(u(·, τ )).

Then, one would define (u,C) suitably on [0, T ]\D , so that q = (u,C) ∈ T ∗.
Depending on the specific properties of W and ψ , this convergence can often be
stronger. The proof of Theorem 6.13 does not depend on the strength of this con-
vergence, thus we will use a convergence such that (49) holds on the minimal set
necessary to build the limiting crack set, giving lower semicontinuity of the energy.

6.2.2. Minimal crack trajectories To define the convergence, we associate to
each q = (u,C) ∈ T ∗ the minimal crack trajectory, C∗, by the following proce-
dure. For each t ∈ [0, T ] set

Ct :=
{

K ⊂ �̄ : K is HN−1 measurable, S(u(τ )) ∪ C0
∼⊂ K for all τ � t

}
,

(50)

and note that

inf
K∈Ct

HN−1(K ) � HN−1(C(T )) < ∞.

For each t ∈ [0, T ] take a sequence {Ct
n}∞n=1 ⊂ Ct such that

HN−1(Ct
n) → inf

K∈Ct

HN−1(K ). (51)
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Define, for t ∈ [0, T ],

C∗(t) :=
⋂
n∈N

Ct
n . (52)

Since for each t ∈ [0, T ], Ct
n ∈ Ct for every n ∈ N, then

S(u(τ )) ∪ C0
∼⊂ C∗(t) for all τ � t (53)

and since C∗(t) is HN−1 measurable then C∗(t) ∈ Ct , which by (51) and (52) gives

HN−1(C∗(t)) = inf
K∈Ct

HN−1(K ) (54)

for all t ∈ [0, T ]. Note C∗(0) ∼= C0 and that the map

t �→ HN−1(C∗(t))

is bounded and monotone, and so is in BV ([0, T ]).

6.2.3. Convergence definition

Definition 6.5. For q = (u,C) ∈ T ∗, with associated C∗, a countable set D gen-
erates q if and only if for every t ∈ [0, T ]

C∗(t) ∼= C0 ∪
⋃
τ�t

τ∈D

S(u(τ )).

Lemma 6.6. For any q = (u,C) ∈ T ∗, there exists a countable dense set that
generates q.

Proof. Since the map

t �→ HN−1(C∗(t)) (55)

is monotone it can only have jump discontinuities, and further these jumps can only
occur on a countable subset of [0, T ]. Choose a countable dense D∗ ⊂ [0, T ] that
contains all of the times where the map in (55) has a jump discontinuity. Define,
for t ∈ [0, T ] and any countable dense D ⊂ [0, T ],

C(D, t) := C0 ∪
⋃
τ�t

τ∈D

S(u(τ )).

Then, for each t ∈ D∗ take a sequence of countable dense subsets {D t
n}∞n=1 such

that

HN−1 (C(D t
n, t)

)→ sup
D ′

HN−1 (C(D ′, t)
)
< ∞.
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Now, set

Dt :=
⋃
n∈N

D t
n .

Since Dt is countable and dense then

HN−1 (C(Dt , t)) = sup
D ′

HN−1 (C(D ′, t)
)
.

Then, set

D :=
⋃

t∈D∗
Dt ,

and so at each t ∈ D∗, we have

HN−1 (C(D, t)) = sup
D ′

HN−1 (C(D ′, t)
)
. (56)

D is a countable dense subset of [0, T ], and we will now show that it generates q.
First, let t ∈ D∗. From (53) we have

C(D, t)
∼⊂ C∗(t). (57)

For any t0 � t ,

HN−1 (S(u(t0))\C(D, t)) = 0,

since otherwise the countable dense subset D ∪ {t0} would contradict (56). Then
since C(D, t) is HN−1 measurable, it is in Ct and by (54)

HN−1(C∗(t)) � HN−1(C(D, t)).

Combining with (57), we have for t ∈ D∗

C∗(t) ∼= C(D, t). (58)

Now take t ∈ [0, T ]\D∗. Choose an increasing sequence {tk}∞k=1 ⊂ D∗ such that
tk → t . Since

⋃
k∈N

C∗(tk)
∼=
⋃
k∈N

C(D, tk)

∼=
⋃
τ<t
τ∈D

S(u(τ )), (59)

then by (53)

⋃
k∈N

C∗(tk)
∼⊂ C(D, t)

∼⊂ C∗(t). (60)
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Therefore

HN−1

(⋃
k∈N

C∗(tk)
)

� HN−1(C(D, t)) � HN−1(C∗(t)). (61)

By (59) the sequence {C∗(tk)}∞k=1 is nondecreasing and so by choice of the set D∗

HN−1

(⋃
k∈N

C∗(tk)
)

= lim
k→∞ HN−1 (C∗(tk)

)

= HN−1(C∗(t)).

Combining this with (60) and (61) gives

C∗(t) ∼= C(D, t).

Therefore the set D generates q. ��
Definition 6.7. We will say that qi → q (with {qi }∞i=1 ⊂ T ∗, q ∈ T ∗) if and only
if

ui (·, t)
SBV→ u(·, t) for all t ∈ D (62)

for some countable dense subset D that generates q.

Remark 6.8. Notice that if a sequence {qi }∞i=1 converges in T ∗ the limit is not
unique since the limiting C is not uniquely specified.

6.3. Relaxation theorem

The goal of this section is to find a representation for I ∗
ε , the relaxation of

Iε :=
∫ T

0
e− t

ε

∫
F(t)

ψ(v)dHN−2dt

with the convergence in (62), that is, for q ∈ T ∗

I ∗
ε [q] := inf

qi ∈T
qi →q

{
lim inf

i→∞ Iε[qi ]
}
. (63)

Lemma 6.9. The map

q �→
∫ T

0
e− t

ε dµ(t), (64)

where q = (u,C) ∈ T ∗ with associated C∗ and µ is the weak derivative of
t → HN−1(C∗(t)), is lower semicontinuous with the convergence (62) in T ∗, that
is, whenever {qi }∞i=1 ⊂ T ∗ and qi → q in T ∗, then

∫ T

0
e− t

ε dµ(t) � lim inf
i→∞

∫ T

0
e− t

ε dµi (t).
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Proof. Let D generate q and for each t ∈ D

ui (·, t)
SBV→ u(·, t).

This implies, again for each t ∈ D

HN−1(S(u(·, t)) � lim inf
i→∞ HN−1(S(ui (·, t))).

By Lemma 3.1 in [6], we then have for all t ∈ [0, T ]

HN−1(C∗(t)) = HN−1

⎛
⎜⎜⎝
⋃
τ�t

τ∈D

S(u(·, t))

⎞
⎟⎟⎠ � lim inf

i→∞ HN−1

⎛
⎜⎜⎝
⋃
τ�t

τ∈D

S(ui (·, t))

⎞
⎟⎟⎠ .

Denoting the minimal crack trajectories associated to qi by C∗
i , we then have

HN−1(C∗(t)) � lim inf
i→∞ HN−1(C∗

i (t)) (65)

for any t ∈ [0, T ]. Applying an integration by parts to the map in (64) gives
∫ T

0
e− t

ε dµ(t)=ε
∫ T

0
e− t

ε HN−1(C∗(t))dt + e− T
ε HN−1(C∗(T ))− HN−1(C0).

(66)

Combine (65) and (66) with Fatou’s Lemma and the lemma is proved. ��
Lemma 6.10. Suppose {ui }∞i=1 ⊂ SBVp(�), p > 1, such that HN−1

(⋃∞
i=1 S(ui )

)
< C, for some constant C. Then, ∃v ∈ SBV (�) such that

∞⋃
i=1

S(ui )
∼= S(v).

Proof. First, we assume that for each i ∈ N, ui ∈ L∞(�), since for any
w ∈ SBV (�), arctan(w) ∈ SBV (�) ∩ L∞(�) and

S(arctan(w)) = S(w).

The plan is to define a sequence {vi }∞i=1 by

vi :=
i∑

j=1

r j u j ,

where the constants {r j }∞j=1 will be chosen so that three properties hold. First,
{vi }∞i=1 will converge in SBV to some v. Also, we will have that for any i ∈ N,

i⋃
j=1

S(u j )
∼= S(vi ).
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Finally, we will have that for every i ∈ N there is a constant ηi > 0 such that, for
all k > i and x ∈ S(vk) (except on a set whose HN−1 measure is less than 1/i),

|[vk](x)| > ηi > 0,

which means that the jump sets of the {vi }∞i=1 do not disappear in the limit. We
begin by setting

r1 := 1

2 max
{
1, ‖∇u1‖L p(�)

}
max

{
1, ‖u1‖L∞(�)

}

and then let v1 := r1u1. As in [6] (see Lemma 3.1), given {v j }i−1
j=1 ⊂ SBV (�),

HN−1(S(v j )) < C ∀ j ∈ N, set

Ai−1(ξ) := {x ∈ S(vi−1) : [vi−1](x)+ ξ [ui ](x) = 0} ,
where, for any z ∈ SBV (�) and x ∈ S(z), [z](x) denotes the jump in the trace
from either side of S(z) at x , that is, [z](x) := z+(x) − z−(x). Note that since
the sets Ai−1(ξ), ξ ∈ R, are disjoint and measurable, HN−1(Ai−1(ξ)) = 0 except
possibly for countably many values of ξ . Choose δi−1 ∈ (0, δi−2) (taking δ0 := 1)
such that

HN−1 ({x ∈ S(vi−1) : |[vi−1](x)| � δi−1}
)
<

1

i − 1
.

Choose ri ∈ (0, ri−1), such that

1. ri <
δi−1

2i max
{
1, ‖∇ui‖L p(�)

}
max

{
1, ‖ui‖L∞(�)

} and

2. HN−1(Ai−1(ri )) = 0.

Now set

vi := vi−1 + ri ui =
i∑

j=1

r j u j .

By the choice of {ri }∞i=1, specifically property 2, we have that

S(u j )
∼⊂ S(vk), ∀k � j. (67)

Also by the choice of the {ri }∞i=1 (property 1), we have that

‖∇vi‖L p(�) �
i∑

j=1

1

2 j max
{

1,
∥∥∇u j

∥∥
L p(�)

} ∥∥∇u j
∥∥

L p(�)

� 1, (68)
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and

‖vi‖L∞(�) �
i∑

j=1

1

2 j max
{

1,
∥∥u j
∥∥

L∞(�)

} ∥∥u j
∥∥

L∞(�)

� 1. (69)

These two estimates, the uniform bound on HN−1(S(vi )), and the compactness of
the space SBV (�) (Theorems 4.7 and 4.8 of [2]) imply that there exists
v ∈ SBV (�) such that, up to a subsequence,

[vi ]HN−1�S(vi )
∗
⇀ [v]HN−1�S(v). (70)

Further, by the calculation in (69), the sequence {vi }∞i=1 is a Cauchy sequence in
L∞, and so converges to some v ∈ L∞. The uniqueness of that limit implies that
the convergence in (70) holds without dropping to a subsequence. Now, by (67) we
can show that

∞⋃
i=1

S(ui )
∼⊂ S(v), (71)

by proving that

∞⋃
i=1

S(vi )
∼⊂ S(v). (72)

So, fix i ∈ N, and let γ > 0. Choose M ∈ N large enough so that M > i and
1/M < γ . For k > M ,

S(vi )
∼⊂ S(vk), (73)

and setting

Bk := {x ∈ S(vk) : |[vk](x)| � δk
}

we have, by the choice of the sequence {δk}∞k=1,

HN−1 (Bk) < γ. (74)

This implies that, for x ∈ S(vk)\Bk ,∣∣∣∣∣
∞∑

i=k+1

ri [ui ](x)
∣∣∣∣∣ �

∣∣∣∣∣
∞∑

i=k+1

δi−1

2i max
{
1, ‖ui‖L∞(�)

}2 ‖ui‖L∞(�)

∣∣∣∣∣

�
∣∣∣∣∣

∞∑
i=k+1

δi−1

2i−1

∣∣∣∣∣

�
∣∣∣∣∣δk

∞∑
i=k

1

2i

∣∣∣∣∣
< |[vk](x)| .
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Therefore

S(vk)
∼⊂ (Bk ∪ S(v)),

by (74) we have

HN−1(S(vk)\S(v)) < γ,

and so (73) implies

HN−1(S(vi )\S(v)) < γ.

Since γ was arbitrary, we have

S(vi )
∼⊂ S(v),

and since i was arbitrary, we have (72) and we have proved (71). The inclusion

S(v)
∼⊂

∞⋃
i=1

S(ui )

follows from (70). ��
Remark 6.11. Note that the rate independent envelope gives the optimal dissipation
and front speed. For any q = (u,C) ∈ T and any t1 < t2, we have

∫ t2

t1

∫
F(t)

ψ(v(x, t))dHN−2(x) dt �
∫ t2

t1

∫
F(t)

ψ̄(v(x, t))dHN−2(x)dt

= C

∫ t2

t1

∫
F(t)

v(x, t)dHN−2(x)dt

= C

∫ t2

t1

d

dt
HN−1(C(t))dt

= C HN−1(C(t2)\C(t1)).

Also, by the continuity of ψ , there is a sequence of front speeds {vi }∞i=1 such that

ψ(vi )

vi
→ C .

We now show that this optimal front speed, and with it the optimal dissipation,
can be achieved by using the right front geometry.

Theorem 6.12. Let [a, b] ⊂ [0, T ] and 	 ⊂ �̄, HN−1(	) < ∞, such that 	
∼=

S(w) for some w ∈ SBV (�). Then, for any δ > 0, there is pair (Cδ, Fδ), defined
for t ∈ [a, b], Cδ(b)\Cδ(a)

∼= 	, the pair satisfies the properties of part 2 of Def-
inition 6.1 (in particular the front representation formula with front speed that we
denote vδ), and

∫ b

a

∫
Fδ(t)

ψ (vδ(x, t)) dHN−2(x)dt < (1 + δ)C HN−1 (	) . (75)
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Proof. The plan is to cover 	 with a countable collection of cubes so that in each
cube 	 is close to a hyperplane through the center of the cube. We partition [a, b]
into a countable family of subintervals. In each cube we will construct (Cδ, Fδ)
during one of the time subintervals by taking N − 1 dimensional slices of 	 that
move at a speed which gives the optimal front speed, according to Remark 6.11. In
each cube we will miss subsets of 	 of small HN−1 measure, for which we later
repeat the above process, and in the end we will miss only a set of HN−1 measure
zero.

Let A1 = 	; in what follows we will inductively define {Ak}∞k=2, Ak ⊂ Ak−1
for all k ∈ N.
Part I First we divide [a, b]. Let {Ik}∞k=1, Ik ⊂ [a, b] ∀k ∈ N, be a countable,
disjoint collection of intervals such that each Ik is nonempty and so that

L1

(
[a, b]


∞⋃
k=1

Ik

)
= 0.

Then, for each Ik , let {Y k
� }∞�=1, Y k

� ⊂ Ik ∀� ∈ N, be a countable disjoint collection
of intervals, each nonempty, such that

L1

(
Ik


∞⋃
�=1

Y k
�

)
= 0.

So, we have that:

L1

(
[a, b]


∞⋃
k=1

∞⋃
�=1

Y k
�

)
= 0.

Part II Suppose we have defined {A j }k
j=1, with A j ⊂ A j−1 ⊂ 	 for j = 1, . . . , k.

As outlined above, we will now cover Ak with a suitable family of cubes in order
to define the crack trajectory and crack front. As in the proof of Theorem 2.1 in
[6], let D be a countable dense subset of R such that for each ξ ∈ D, Ewξ is a set of
finite perimeter. Then

S(w)
∼⊂
⋃
ξ∈D

∂∗Ewξ .

Let η > 0. From now on, if x0 ∈ ∂∗E for some specified set of finite perimeter
E , assume that any cube Q(x0, r) is oriented so that νE (x0) is normal to one of
the faces of the cube. From [6] (see the derivation of equation (2.1) in the proof of
Theorem 2.1), we know that for all ξ ∈ D, and HN−1-almost every x ∈ Ak ∩∂∗Ewξ ,

lim
r↓0

HN−1(Q(x, r) ∩ Ak ∩ ∂∗Ewξ )

(2r)N−1 = 1. (76)

We have for x ∈ ∂∗Ewξ (see Remark 3.55 in [2])

lim
r↓0

−
∫

Q(x,r)
|νEwξ

(y)− νEwξ
(x)|d|DχEwξ

|(y) = 0.
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This implies that

lim
r↓0

|DχEwξ
|
(
{y ∈ Q(x, r) : |νEwξ

(y)− νEwξ
(x)| � η}

)

|DχEwξ
|(Q(x, r)) = 0

and so

lim
r↓0

|DχEwξ
|
(
{y ∈ Q(x, r) : |νEwξ

(y)− νEwξ
(x)| < η}

)

|DχEwξ
|(Q(x, r)) = 1

for x ∈ ∂∗Ewξ . Combining this with Corollary 1 of Section 5.7 in [5], we then have
that, again for x ∈ ∂∗Ewξ ,

lim
r↓0

|DχEwξ
|
(
{y ∈ Q(x, r) : |νEwξ

(y)− νEwξ
(x)| < η}

)

(2r)N−1 = 1.

And, since by Theorem 2 in Section 5.7 of [5], we have |DχEwξ
| = HN−1�∂∗Ewξ ,

we have that for x ∈ ∂∗Ewξ

lim
r↓0

HN−1
(

Q(x, r) ∩ {y ∈ ∂∗Ewξ : |νEwξ
(y)− νEwξ

(x)| < η}
)

(2r)N−1 = 1. (77)

Combining (76) and (77), we know that for all ξ ∈ D and HN−1-almost every
x ∈ Ak ∩ ∂∗Ewξ ,

lim
r↓0

HN−1
(

Q(x, r) ∩ Ak ∩ {y ∈ ∂∗Ewξ : |νEwξ
(y)− νEwξ

(x)| < η}
)

(2r)N−1 = 1.

(78)

Now, since D is countable, we also have that (78) holds for HN−1-almost every
x ∈ Ak and all ξ ∈ D such that x ∈ ∂∗Ewξ .

For HN−1-almost every x ∈ Ak , we choose ξ(x) such that for the set Ex :=
Ewξ(x) we have x ∈ ∂∗Ex . We use (78) to finely cover (up to a set of HN−1 measure
zero) the set Ak with the family G of all cubes Q(x, r), x ∈ Ak , and r small enough
so that Q(x, r) ⊂ �′ and the following properties hold:

1.
(
1 − η

k

)
(2r)N−1 < HN−1(Q(x, r) ∩ Ak ∩ {y ∈ ∂∗Ex : |νEx (y)− νEx (x)| <

η}) < (1 + η
k

)
(2r)N−1

2.
(
1 − η

k

)
(2r)N−1 < HN−1(Q(x, r) ∩ Ak) <

(
1 + η

k

)
(2r)N−1.

Now, applying Besicovitch’s covering theorem (specifically Corollary 1 of
Section 1.5 in [5]) using the Radon measure HN−1�Ak , we get a countable dis-
joint collection of cubes {Qk

�}∞�=1 ⊂ G, such that

HN−1

(
Ak\

∞⋃
�=1

Qk
�

)
= 0.
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In each cube Qk
� , we will build up the set Ak ∩ Qk

� in the time interval Y k
� , in a

way that has a front representation, and uses the optimal front speed as calculated
in Part I.

Part III Fix such a pair (Qk
�,Y k

� ), and we will employ the simpler notation Y k
� =

[t1, t2], 
t := t2 − t1 and Qk
� = Q(x, r). Also, we assume a coordinate system so

that

Qk
� =

N∏
i=1

[0, 2r ]

and νEx (x) = e1. Define

Gk
� := Qk

� ∩ Ak ∩
{

y ∈ ∂∗Ex : ν1
Ex
(y) > 1 − η

}
.

Note that by properties 1 and 2 of the choice of cubes, we have

HN−1
(

Qk
� ∩
(

Ak\Gk
�

))
<

2

k
η(2r)N−1.

The plan is to define a front by taking N − 1 dimensional slices of the set Gk
� . With

this in mind, define the “slicing function” σ , which maps pairs (t, A) ∈ R × R
N

to subsets of R
N−1 by

σ(t, A) :=
{

z ∈ R
N−1 : (z1, . . . , zN−1, t) ∈ A

}
.

Also, define the family of imbeddings of R
N−1 into R

N by setting for t ∈ R and
Ã ⊂ R

N−1:

φt ( Ã) :=
{

y ∈ R
N : y = (z1, . . . , zN−1, t) for some z ∈ Ã

}
.

Set

St := σ
(

t, Qk
� ∩ Ex

)
.

Claim. For L1-almost every t ∈[0, 2r ], St is a set of finite perimeter in R
N−1.

(79)

Proof of Claim. By Theorem 2 in Section 5.10 of [5], we know that f ∈ BVloc(R
N )

if and only if
∫

K
(ess V b

a fk)(x
′)dLN−1(x ′) < ∞, (80)

for each k =1, . . . , N , a < b, and compact set K ⊂ R
N−1, with x ′ =(x1, . . . , xk−1,

xk+1, . . . , xN ) ∈ R
N−1 and

fk(x
′, t) := f (. . . , xk−1, t, xk+1, . . .).
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Let

K ∗ :=
(

N−1∏
i=1

[0, 2r ]
)

⊂ R
N−1.

For any y ∈ K ∗, define the function (χEx )y : (0, 2r) → {0, 1} by

s �→ (χEx )y(s) := χEx ∩Qk
�
(s, y).

Also, define the function SV : K ∗ → R by

y �→ SV (y) := ess V 2r
0 (χEx )y .

Since χEx ∈ BV (�), then applying (80), using K ∗ as our compact set, gives
∫

K ∗
SV (y)dLN−1(y) < ∞. (81)

Then, if N = 2, we have proven (79), since for any s, t ∈ (0, 2r), (χEx )t (s) =
χSt (s) and so by (81), for L1-almost every t , χSt has finite essential variation. For
N > 2, let

K ∗∗ :=
(

N−2∏
i=1

[0, 2r ]
)

⊂ R
N−2.

Then applying Fubini’s theorem to (81) we have

∫ 2r

0

∫
K ∗∗

SV (y′, ξ)dLN−2(y′)dξ < ∞.

So, there exists a set N ⊂ [0, 2r ] such that for ξ ∈ [0, 2r ]\N ,
∫

K ∗∗
SV (y′, ξ)dLN−2(y′) < ∞.

and

L1([0, 2r ]\N ) = 0.

For any t ∈[0, 2r ]\N , and y′ ∈ K ∗∗, define the function (χσt )y′ : (0, 2r)→{0, 1} by

z �→ (χσt )y′(z) := χσ(t,Ex ∩Qk
�)
(z, y′),

and then define the function SVt : K ∗∗ → R

y′ �→ SVt (y
′) := ess V 2r

0 (χσt )y′ .

By definition of σ , we have that for any t ∈ [0, 2r ], y′ ∈ K ∗∗, and z ∈ (0, 2r):

(χσt )y′(z) = (χEx )(y′,t)(z),
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and so

SVt (y
′) = SV (y′, t)

for all y′ ∈ K ∗∗, t ∈ [0, 2r ]. Therefore, for t ∈ [0, 2r ]\N ,
∫

K ∗∗
SVt (y

′)dLN−1(y′) < ∞. (82)

Applying (82) and the other implication of Theorem 2 in Section 5.10 of [5] to the
functionχσ(t,Qk

�∩Ex )
defined on R

N−1, gives us that for L1-almost every t ∈ [0, 2r ],
χσ(t,Qk

�∩Ex )
∈ BV (RN−1), which means that the set St is a set of finite perimeter

in R
N−1, which concludes the proof of (79). ��

The above claim implies that there exists a set N ⊂ [0, 2r ] with measure zero
such that, for t ∈ [0, 2r ]\N , there exists a vector valued Radon measure on R

N−1,
denoted

[∂St ] = (|∂e1 St |, . . . , |∂eN−1 St |
)
,

such that∫
σ(t,Qk

�)

χSt (y) div ϕ(y)dLN−1(y) = −
∫
σ(t,Qk

�)

ϕ(y) · d[∂St ](y)

for all ϕ ∈ C1
0(σ (t, Qk

�); R
N−1). And, according to Theorem 2 in Section 5.7 of

[5], we have that

|∂St | = HN−2�∂∗St

for t /∈ N .
Part IV The goal of this part of the proof is to show how Ak ∩ Qk

l can be built up
in a way that satisfies the front representation formula by taking a moving slice of
the cube with speed 1. Define, for t ∈ [0, 2r ],

F̃(t) :=
{
φt (σ (t,Gk

�) ∩ ∂∗St ) if t /∈ N
∅ if t ∈ N

and

C̃(t) :=
{

y ∈ Gk
� : yN � t

}
.

For every t ∈ [0, 2r ], C̃(t) is the intersection of a |DχEx | measurable set and a
Borel set and therefore is |DχEx | measurable. Also, C̃(2r) = Gk

� . To show that
the pair (C̃, F̃) satisfies the front representation formula, we will define a family
of measures ρt , t ∈ [0, 2r ], such that

ρt (A) =
∫ t

0
HN−2(F̃(ξ) ∩ A)dξ, (83)
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for any Borel set A ⊂ R
N . First, we must ensure that a family of Radon measures

can be defined in this manner.
For j < N , the measure valued map

t �→
{ |∂e j St | if t ∈ [0, 2r ]\N

0 if t ∈ N (84)

is L1-measurable in the sense of Definition 2.25 of [2] by the following adaptation
of Lemma 3.106 in [2]. By Proposition 2.6 of [2], we need to verify that for any
open set A ⊂ Qk

� , the map t �→ |∂e j St |(A) is L1-measurable. Taking A to be such
a set, we choose a sequence fn → e jχA, fn ∈ C1

0(A; R
N−1). Then, the functions

t �→ �n(t) :=
∫
σ(t,Qk

�)

χSt (ξ) div fn(ξ)dLN−1(ξ)

are L1-measurable for all n by Fubini’s Theorem. Since for all n ∈ N∫
σ(t,Qk

�)

χSt (ξ) div fn(ξ)dLN−1(ξ) = −
∫
σ(t,Qk

�)

fn(ξ) · d[∂St ](ξ),

then for L1-almost every t ,

−�n(t) → |∂e j St |(A),
as n → ∞, and so we satisfy the requirement of Proposition 2.6 of [2], which
implies that the map in (84) is L1-measurable. Further, by Theorem 3.107 in [2],
we have for any j < N ,

|De jχEx | = L1�[0, 2r ] ⊗ |∂e j St |, (85)

where the measure product on the right-hand side is given by Definition 2.27 of
[2]:

(
L1�[0, 2r ] ⊗ |∂e j St |

)
(A) :=

∫ 2r

0

∫
σ(t,Qk

�)

χσ(t,A)(ξ)d|∂e j St |(ξ)dt,

for any A ⊂ Qk
� , A Borel. Since

|De jχEx |(Qk
�) � |DχEx |(Qk

�)

< ∞,

the measure L1�[0, 2r ] ⊗ |∂e j St | is Radon, again for j < N . Next, we turn our
attention to the measure-valued map

t �→
{ |∂St | if t ∈ [0, 2r ]\N

0 if t ∈ N .
(86)

For any j < N , the function ζ j , defined for t ∈ [0, 2r ] and x ∈ ∏N−1
i=1 [0, 2r ] (up

to a set of L1�[0, 2r ] ⊗ |∂e j St | measure zero)

ζ j (t, x) := ν
j
St
(x),
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is L1�[0, 2r ] ⊗ |∂e j St |-measurable, and so it follows that (ζ j )
2 is L1�[0, 2r ] ⊗

|∂e j St |-measurable. Proposition 2.26 of [2] implies that for all j < N , the map

t �→
∫
σ(t,Qk

�)

(
ν

j
St

)2
(x)d|∂St |(x)

is L1�[0, 2r ] measurable, which implies that the map in (86) is L1�[0, 2r ] measur-
able. Also, for any j < N ,

∫ 2r

0
ν

j
St
(ξ)d|∂St |(ξ)dt =

∫ 2r

0
|∂e j St |(σ (t, Qk

�))dt

< ∞,

and so, since for any t ∈ [0, 2r ]\N and ξ ∈ R
N−1,

∑N−1
j=1 (ν

j
St
)2(ξ) = 1, we have

∫ 2r

0
|∂St |(σ (t, Qk

�))dt =
∫ 2r

0

∫
σ(t,Qk

�)

N−1∑
j=1

{
(ν

j
St
)2(ξ)

}
d|∂St |(ξ)dt

=
N−1∑
j=1

∫ 2r

0

∫
σ(t,Qk

�)

(ν
j
St
)2(ξ)d|∂St |(ξ)dt

�
N−1∑
j=1

∫ 2r

0

∫
σ(t,Qk

�)

ν
j
St
(ξ)d|∂St |(ξ)dt

< ∞.

Therefore, we define the Radon measure by the measure product

(
L1�[0, 2r ] ⊗ |∂St |

)
(A) :=

∫ 2r

0

∫
σ(t,Qk

�)

χσ(t,A)d|∂St |(ξ)dt,

for all A ⊂ Qk
� , A Borel. Since the set Gk

� is |DχEx | measurable, there exists a
Borel set that agrees |DχEx |-almost everywhere with Gk

� , and so we assume that
Gk
� is Borel. Therefore, we can define the family of Radon measures, t ∈ [0, 2r ],

by setting for each Borel set A ⊂ Qk
�

ρt (A) :=
∫

A
χGk

�
(y)d

(
L1�[0, t] ⊗ |∂Sξ |

)
(y)

=
∫ t

0

∫
σ(ξ,Gk

�∩A)
d|∂Sξ |dξ.

Since |∂St | = HN−2�∂∗St , and by definition of F̃ , we can write these measures as

ρt (A) =
∫ t

0
HN−2

(
σ(ξ,Gk

� ∩ A) ∩ ∂∗Sξ
)

dξ

=
∫ t

0
HN−2

(
φt (σ (ξ,Gk

� ∩ A) ∩ ∂∗Sξ )
)

dξ

=
∫ t

0
HN−2

(
F̃(ξ) ∩ A

)
dξ (87)
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giving (83).
Next, we show that ∀t ∈ [0, 2r ], we have that for any ball B ⊂ Qk

�

(1 − η)|DχEx |(C̃(t) ∩ B) � ρt (B) � |DχEx |(C̃(t) ∩ B). (88)

We have by choice of the set Gk
� ,

(1 − η)|DχEx |(C̃(t) ∩ B) � |De1χEx |(C̃(t) ∩ B).

Using (85), we have

|De1χEx |(C̃(t) ∩ B)) =
∫ t

0
|∂e1 Sξ |

(
σ(ξ, C̃(t)) ∩ σ(ξ, B)

)
dξ

=
∫ t

0
|∂e1 Sξ |

(
σ(ξ,Gk

�) ∩ σ(ξ, B)
)

dξ

�
∫ t

0
|∂Sξ |

(
σ(ξ,Gk

�) ∩ σ(ξ, B)
)

dξ

=
∫ t

0
HN−2

(
φξ (σ (ξ,Gk

�) ∩ ∂∗Sξ ∩ B)
)

dξ

= ρt (B),

and so (88) is proved. This estimate implies that, ∀t ∈ [0, 2r ],
|DχEx |�C̃(t) << ρt ,

and that the densities

γt (ξ) := d(|DχEx |�C̃(t))

dρt
(ξ)

exist ∀t ∈ [0, 2r ], ρt -almost everywhere and satisfy the uniform bounds

1 � γt � 1

1 − η
.

Therefore, by the generalized Fubini theorem of Definition 2.27 in [2], we have for
all ϕ ∈ C1

0([0, 2r ]) and f ∈ C0(Q(x, r)),

∫ 2r

0
ϕ̇(t)
∫

C̃(t)
f (x)dHN−1(x)dt =

∫ 2r

0
ϕ̇(t)

∫
Qk
�

f (x)γt (x)dρt (x)dt

=
∫ 2r

0
ϕ̇(t)
∫ t

0

∫
F̃(ξ)

f (x)γξ (x)dHN−2(x)dξ dt by (87)

= −
∫ 2r

0
ϕ(t)

∫
F̃(t)

f (x)γt (x)dHN−2(x)dt.

So we see that in the cube Qk
� the pair (C̃, F̃) satisfies the front representation with

front speed v(x, t) = γt (x).
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Part V Now, instead of taking single slices of the cube moving at speed of 1, we
will take slices in a way that allows us to approximate the optimal front speed. By
definition of C , for any δ > 0 we can choose v∗ ∈ (0,∞) such that

ψ(v∗)
v∗ � C (1 + δ).

Also, by the continuity of ψ , we can further take η small enough so that if
v∗ < v0 < v∗ 1

1−η we have

ψ(v0)

v0
� C (1 + δ),

and hence

ψ(v0) � (1 + δ)C v0 when v∗ < v0 < v∗ 1

1 − η
. (89)

Set

lmin := (2r)N−1

v∗
t

and

l̃ := lmin

(2r)N−2 = (2r)

v∗
t
.

We will employ the following notation:

• �l̃� - the greatest integer less than or equal to l̃
• �l̃� - the least integer that is greater than or equal to l̃
• {l̃} - the fractional part of l̃
• t∗ := (1 − {l̃})
t + t1.

First, in the interval [t1, t∗], set

λ∗ := v∗�l̃�(t∗ − t1).

Then, for m ∈ N, m � �l̃�, define

Sm(t) := λ∗(m − 1)

�l̃� + v∗(t − t1).

We perform a similar construction in (t∗, t2], namely set

λ∗ := v∗�l̃�(t2 − t∗),

and for m ∈ N, m � �l̃�, define

Sm(t) := λ∗(m − 1)

�l̃� + v∗(t − t1).



Fracture Paths from Front Kinetics 577

Then, define

S(t) :=

⎧⎪⎨
⎪⎩

⋃
m∈N

m��l̃�
{Sm(t)} if t ∈ [t1, t∗]

⋃
m∈N

m��l̃�
{Sm(t)} if t ∈ (t∗, t2]

The function S then maps t to the set of points in R where we want to take slices
of the cube at time t . Note that

⋃
t∈[t1,t2]

S(t) = [0, 2r ],

and further that every ξ ∈ [0, 2r ] belongs to S(t) for only one t . Now define, for
t ∈ [t1, t2],

Fk,�
η (t) := F̃ (S (t))

Ck,�
η (t) :=⎧⎪⎨
⎪⎩

⋃
m∈N

m��l̃�
{y ∈ Gk

� : Sm(t1) � yN � Sm(t)} if t ∈ [t1, t∗]
{y ∈Gk

� : yN � λ∗} ∪⋃ m∈N

m��l̃�
{y ∈Gk

� : Sm(t∗) � yN � Sm(t)} if t ∈ (t∗, t2]

Note that by construction of the slices, Ck,�
η (t) = Gk

� . Then, in a manner similar
to above, define the family of measures ρvt , t ∈ [t1, t2], by setting, for any Borel
A ⊂ Qk

�

ρvt (A) :=
∫ t2

t1
v∗HN−2

(
Fk,�
η (t) ∩ A

)
dt.

For reasons similar to those used for the measures ρt , these measures are all well
defined Radon measures. Now, by applying the change of variables

∫ (2r)
λ

0
HN−2(F̃(λt))dt = λ

∫ 2r

0
HN−2(F̃(t))dt,

to each of the slices individually, we find that

ρvt2(Q
k
�) = ρ2r (Q

k
�), (90)

however note that such an equality does not necessarily hold at any other time in
t ∈ [t1, t2]. Also, with a similar restriction to one slice regions, the previous argu-
ment for the measures ρt can be modified to prove that ∀t ∈ [t1, t2], we have that
for any ball B ⊂ Qk

�

(1 − η)|DχEx |
(

Ck,�
η (t) ∩ B

)
� ρvt (B) � |DχEx |

(
Ck,�
η (t) ∩ B

)
. (91)

This means that ∀t ∈ [t1, t2],
|DχEx |�Ck,�

η (t) << ρvt ,
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and that the densities

γ vt (x) := d(|DχEx |�Ck,�
η (t))

dρvt
(x)

exist ∀t ∈ [t1, t2], ρvt -almost every x ∈ Qk
� , and satisfy the uniform bounds

1 � γ vt � 1

1 − η
.

Therefore, for ϕ ∈ C1
0([t1, t2]) and f ∈ C0(�

′),
∫ t2

t1
ϕ̇(t)

∫
Ck,�
η (t)∩Q(x,r)

f (x)dHN−1(x)dt

= −
∫ t2

t1
ϕ(t)

∫
Fk,�
η (t)

f (x)v∗γ vt (x)dHN−2(x)dt.

Since for any f ∈ C0(�
′), the map

t �→
∫

Ck,�
η (t)\Qk

�

f (x)dHN−1(x)

is constant in [t1, t2], we have
∫ t2

t1
ϕ̇(t)

∫
Ck,�
η (t)\Qk

�

f (x)dHN−1(x)dt = 0,

for any ϕ ∈ C1
0([t1, t2]). Therefore we have that for ϕ ∈ C1

0([t1, t2]) and
f ∈ C0(�

′)
∫ t2

t1
ϕ̇(t)

∫
Ck,�
η (t)

f (x)dHN−1(x)dt =−
∫ t2

t1
ϕ(t)

∫
Fk,�
η (t)

f (x)v∗γ vt (x)dHN−2(x)dt.

Thus, in each time interval Y k
� the pair (Ck,�

η , Fk,�
η ) satisfies the front representation,

with front velocity vk,�
η (x, t) = γ vt (x)v

∗. Employing the uniform bounds on γ vt
and (89), we have the following upper bound on the dissipation for the trajectory
in the cube for η small enough:
∫ t2

t1

∫
Fk,�
η (t)

ψ(vk,�
η (x, t))dHN−2(x)dt =

∫ t2

t1

∫
Fk,�
η (t)

ψ(v∗γt (x))dHN−2(x)dt

� (1 + δ)C

∫ t2

t1

∫
Fk,�
η (t)

v∗γt (x)dHN−2(x)dt

= (1 + δ)C

∫ t2

t1

∫
Fk,�
η (t)

vk,�
η (x, t)dHN−2(x)dt.

Part VI Repeat this construction in each cube Qk
l during the time interval Y k

l , and
in this way define the functions Ck

η and Fk
η for L1 almost every t ∈ Ik . From Part
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V we have that the front representation formula holds in each time interval, which
means that for ϕ ∈ C1

0(Ik) and f ∈ C0(�
′)

∫ t2

t1
ϕ̇(t)

∫
Ck,�
η (t)

f (x)dHN−1(x)dt =−
∫ t2

t1
ϕ(t)

∫
Fk,�
η (t)

f (x)v∗γ vt (x)dHN−2(x)dt

+
∫

Fk,�
η (t2)

f dHN−2(x)−
∫

Fk,�
η (t1)

f dHN−2(x)

where the boundary terms are the traces of the L1(Ik) function

t �→
∫

Fk,�
η (t)

f dHN−2(x). (92)

Thus, by linearity of the integral we sum over all of the intervals Y k
l , and use the

fact that there are no jumps in the traces of the function (92) at the endpoints of
each interval Y k

l , to see that the front representation holds for Ck
η and Fk

η in Ik , that
is, for ϕ ∈ C1

0(Ik) and f ∈ C0(�
′)

∫ t2

t1
ϕ̇(t)

∫
Ck
η(t)

f (x)dHN−1(x)dt = −
∫ t2

t1
ϕ(t)

∫
Fk
η (t)

f (x)vk
ηdHN−2(x)dt.

Now, define Ak+1 by setting

Ak+1 := Ak\Ck
η(Ik),

where by C(Ik) we mean the Ck
η image of the set Ik . By the above we have

HN−1(Ak+1) �
∞∑

l=1

2

k
η(2rk

l )
N−1

� 2

k

1

1 − η
k

HN−1(Ak). (93)

Then, repeat the above construction for each Ak on the time interval Ik , k > 1, to
define the functions Cη and Fη on all of [a, b]. We apply a similar argument to the
above to show that the pair (Cη, Fη) satisfies the front representation formula in
[0, T ]. Now, since {Ak}∞k=1 is a decreasing sequence of HN−1 measurable sets and
HN−1(Ak) < ∞, by (93)

HN−1 (Cη(b)\	) = 0.

Since all of the time intervals are disjoint and cover almost all of [a, b], we have
that∫ b

a

∫
Fη(t)

ψ(v(x, t))dHN−2(x)dt � (1 + δ)C

∫ b

a

∫
Fη(t)

vη(x, t)dHN−2(x)dt

= (1 + δ)C HN−1(	).

��
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Now we prove the relaxation theorem.

Theorem 6.13. Let ψ : [0,∞) → [0,∞) be continuous and

Iε[q] :=
∫ T

0
e− t

ε

∫
F(t)

ψ(v(x, t))dHN−2(x)dt (94)

for q = (u,C) ∈ T . Then I ∗
ε , the lower semicontinuous envelope in T ∗ of the

functional Iε , with respect to the convergence defined by (62), is given by

I ∗
ε [q] = C

∫ T

0
e− t

ε dµ(t), (95)

where q = (u,C) ∈ T ∗, C∗ is the minimal crack set trajectory associated to q, µ
is the weak derivative of t �→ HN−1(C∗(t)), and

C := inf
s∈(0,∞)

ψ(s)

s
,

Proof. The proof proceeds as follows. First, we use the results of Theorem 6.12 to
construct a sequence {qi }∞i=1 ⊂ T such that qi → q and whose energies converge
to the right-hand side of (95). Then we will combine this construction and the lower
semicontinuity of the right-hand side of (95) to complete the proof.

Let q = (u,C) ∈ T ∗ with associated C∗. We construct a sequence {q j }∞j=1 ⊂ T
that converges to q and achieves the lower bound in the limit through the following.
Let D be a countable dense subset of [0, T ] that generates q and contains the times
0 and T . For each j ∈ N, choose

D j :=
{

0 = t j
0 < t j

1 < · · · < t j
j = T

}
⊂ D

such that {D j } is an increasing sequence of nested sets and

D =
∞⋃
j=1

D j .

Now, fix j ∈ N. By definition of T ∗, for each t ∈ [0, T ] u(·, t) ∈ SBVp(�
′)where

p > 1. Also, since D generates q then for every t ∈ [0, T ]

C∗(t) ∼= C0 ∪
⋃
τ�t

τ∈D

S(u(τ )).

Since HN−1(C∗(t)) � HN−1(C∗(T )) < ∞ for all t ∈ [0, T ], we can apply
Lemma 6.10 and Theorem 6.12, so that for each interval [t j

k , t j
k+1], k = 0, . . . , j−1,

we can choose a pair (C j
k , F j

k ) satisfying the front representation and so that

C j
k (t

j
k+1)\C j

k (t
j

k )
∼= C∗(t j

k+1)\C∗(t j
k ) (96)
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and

∫ t j
k+1

t j
k

∫
F j

k (t)
ψ
(
v j (x, t)

)
dHN−2(x)dt �

(
1 + 1

j

)
HN−1

(
C∗(t j

k+1)\C∗(t j
k )
)

=
(

1 + 1

j

)∫ t j
k+1

t j
k

d|DHN−1(C∗(t))|.
(97)

Repeat this process for each k = 0, . . . , j − 1, and then define {q j = (u j ,C j )}∞j=1
by setting

u j (t) :=
{

u(t j
k ) for t ∈ [t j

k , t j
k+1)

u(T ) for t = T

and

C j (t) :=
{

C j
k (t

j
k ) for t ∈ [t j

k , t j
k+1)

C∗(T ) for t = T .

Clearly we have for each t ∈ D

u j (·, t) → u(·, t),

in fact for any such t there is an M ∈ N such that for all j > M , u j (·, t) ≡ u(·, t).
Then, we have the upper bound

Iε[q j ] =
j−1∑
k=0

∫ t j
k+1

t j
k

e− t
ε

∫
Fj (t)

ψ
(
v j (x, t)

)
dHN−2(x)dt

�
(

1 + 1

j

)
C

j−1∑
k=0

∫ t j
k+1

t j
k

e− t
j

k
ε d|DHN−1(C∗(t))|,

and the lower bound

Iε[q j ] =
j−1∑
k=0

∫ t j
k+1

t j
k

e− t
ε

∫
Fj (t)

ψ
(
v j (x, t)

)
dHN−2(x)dt

� C

j−1∑
k=0

∫ t j
k+1

t j
k

e− t
j+1

k
ε d|DHN−1(C∗(t))|.

Thus, we have

Iε[q j ] → C

∫ T

0
e− t

ε d|DHN−1(C∗(t))| as j → ∞. (98)
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We now combine the results above to complete the proof. For any q = (u,C)∈ T ∗
with associated C∗, from Remark 6.11 and the sequence constructed in Part I, we
have that

C

∫ T

0
e− t

ε dµ � I ∗
ε [q]. (99)

The other inequality

I ∗
ε [q] � C

∫ T

0
e− t

ε dµ � I ∗
ε [q] (100)

follows from the following. For any {qi }∞i=1 ⊂ T such that qi → q. we again
combine Remark 6.11 and Part I to construct a sequence q̃i so that q̃i → q with

lim inf
i→∞ C

∫ T

0
e− t

ε dµi = lim
j→∞ Iε[q̃ j ],

which combined with Lemma 6.9 gives (100). ��
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