CHAPTER 1
Numerical Methods for Structural
Dynamics:

1.1 Introduction:

One looking at previous works done on the subject treated here may be sur-
prised to see that models used for the structure part vary enourmously in their
complexity and range of applicability. In fact, the assumptions made depends
on many criteria, namely the shape, the dimension and the material. When
the subject is rather oriented towards fluid dynamics than structural dynamics,
many prefers, as a first step, to consider simple structural models. By simple
we mean unidimensional linear elastic models.

1.2 Linear Elastic Model:

1.2.1 Introduction:

The use of linear elastic models depend on the following basic assumptions
regarding the structure :

e the structure is thin : h << R,
e the strains are small everywhere, although large deflexions are admitted,

e the state of stress can be considered plane.

1.2.2 Thin plate model:

We consider a thin elastic flat plate of lenght L with infinite aspect ratio and
having its undeflected surface in the x,y-plane. The governing equation for the

motion of a thin plate is expressed as following:
P*w(w,y,t
% + DV*iw(z,y,t) = f(z,y,1) (1.1)
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If we consider that the longitudinal displacements can be neglected due to
the plate’s thinness, the equation (1.1) take the form:

D

0?w(z, ) 0*w(x,t)
The boundary conditions expressing the fact that the plate is simply sup-
ported at the edges, see figure ??, are given by:

Py(x,t
y(xat)|w:O,L:O , %H:O,L:O (1.3)

1.2.3 Spatial Discretisation:
Finite Differences Approach:

In this section we describe the use of the Finite Differences approach to discretise

the mathematical model described in the previous section. We consider that the

length of the plate L is represented by n equidistant nodes denoted by L; and

the space between the nodes is denoted by Az. The 4th order spatial derivative

is then discretised at y; as follows:

y(z,1) Yi—2 = 4yi—1 + 6yi — dyit1 + Yito

oyl - : Am; : 2 L 0(A?) (1.4)
Replacing the spatial derivative by its discretisation (1.4) in the equation

(1.2) we obtain the following ordinary differential equation:

Py Yi—2 — 4yi—1 + 6yi — 4yit1 + Vit

Using the central difference for the 2nd order boundary condition, the dis-

cretisation of the boundary conditions (1.3) is given by:

Yo = Yn = 0
Yy-1=-U
Yn+1l = —Yn—-1

With these boundary conditions we can express the equation (1.5) in the
matrix form as:

[M]3(t) + [K]y(t) = f (1.6)
[M] denotes the mass matrix given by :
[M] = ml[I]

[K] denotes the stiffness matrix given by :

K= 3 S



y denotes vector of vertical displacement at the nodes and the double dot denotes
the double derivative or acceleration. f is the force vector composed by local
forces at the nodes. The size of vectors and matrices is (n — 2) and (n — 2)?
respectively.

Finite Elements Approach:

The weak form is obtained by multipying the equation by a weight function
w(x) and integrate the resulting equation over the domain, which leads to :

/m 826# dx +/D 84 ) :Lw(x)fwdx (1.7)

We use the integration by parts in order to simplify the 4th order partial
derivative appearing in the second integral of the previous equation (1.7):
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We impose the following condition on w(x):

y(z,t)|z=0,L. =0 = w(z)|z=0, =0

which leads to the simplified form of equation (1.7):

/m 828752 /D 5 (x 2 d:r:/ww(x)fz dx (1.8)

The domain is considered one dimension, acconding to this the plate is sub-
divised into n — 1 itervals or elements, i.e n nodes. In order to describe the
diplacement by a 3rd order function we need to define two degree of freedom
per nodes, namely the displacment and the rotation angle, which leeds to 4
degree of freedom per element. If we consider, as shown in figure 2, one element
defined by two nodes, z; and x;11. The displacments at these nodes are denoted
by y; and y;+1 and the rotation angles by w; and w;41.

The coordinates are transformed into natural ones which are bounded by
—1 < 1 < 1, we may then express the displacment Y'(n) as a function of the
four degrees of freedom:

Y (n) =y " N(n)
Where
Yi
Y= U'Vz 7N("7) =

Yi+1

Wi+1
With the vector N(n) containing the third order interpolation functions of the
element. We use the Galerkin approach, we may then write:

w(n) = N(n)



We need also to transform the partial derivatives with respect to x into partial
derivatives with respect to n as the following:
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1.2.4 Eigenvalue Analysis:

The aim of the eigenvalues analysis is to validate the model proposed by compar-
ing the analytical eigenfrequencies to the numerical ones. During the eigenvalues
analysis we don’t consider the force vector; we may then consider the following
equation:

M) + [K]y(t) = 0

In order to obtain a generalized eigenvalue problem we substitute the harmonic
time dependence [I.3.b] in the equation [I.3.a):

y(t) = ye'!

([K] = A[M])y =0

1.2.5 Time Discretisation:

The Newmark methods family is one of several direct integration methods avail-
able for second order hyperbolic equations and is widely used for this purpose.
In this scheme, the following assumptions are considered for both the function
and its first derivative:

1
Yy =yt AL+ AP — )i+ agn ] (1.9)

and 1
yn+1 — yn + At[(§ _ 6)?/” +6yn+1] (1_10)

Where a and § denotes parameters controling the stability and accuracy of the
method.

The constant-average acceleration method had been proposed originally by
Newmark who states that this scheme in unconditionnally stable for a = % and
B = L. The acceleration vector §i(t) is defined as a constant average of the

2
vectors at t" and ¢! :

. Lo
i) = " + ") (1.11)
In this case we may rewrite the equations 1.9 and 1.10 as the following;:
y =yt AT+ =+ (1.12)
and At
g =g+ T+ (1.13)
The equation 1.12 is rearranged to express the acceleration vector at n + 1:
4 4
on+l = omn4+l  ,ony T en n 1.14
i NP ') = xgi" (1.14)



And using the equations 1.13 and 1.14 the velocity vector at n + 1 is expressed
by :
2
-n+1 _ Z n+l _ ,n\y _ »n 115
] i v') -y (1.15)
Substitution of equation 1.14 in the equation of motion 7?7 at n + 1 gives the
equation for the displacment vector:

4 4 4
M4+ K4+ (FT + M(——y™ + — " + " 1.16
y (XM + K] +( +M(Lmy" + 19" i) (1.16)

The solution process begin at time ¢t = 0, i.e. » = 0 by a given inital vector
y° and inital vector 3°. The initial acceleration vector §j° is then determined
via the equation of motion 7?7 at n = 0:

i =M (F° - Ky") (1.17)

The displacment vector at n + 1 is obtained using the equation 1.16, then the
velocity and acceleration vectors are calculated by the equations 1.15 and 1.14
respectively.

Algorithm:
Initialisation:

1. Form stiffness matrix K and mass matrix M
2. Calculate effective loads F' at t =0
3. Initialise y°, ¢°, §°
4. Select time step At
5. Form effective matrix A = ﬁM + K
6. Inverse matrix A
Tteration:
1. Calculate effective loads F' at t + At
2. Calculate displacements at ¢ + At
3. Calculate velocities and accelerations at t + At

4. Check convergence




