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Proof (by induction):

Initial steps:
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Induction step:

P (n + 1) = xP (n)− P (n− 1) (3)

= x
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Now we proceed on two distinct cases:

• When n is even: (bn2 c = n
2 , bn−12 c = n

2 − 1, bn+1
2 c = n

2 )

Taking out the first term (k = 0) of the first sum, in order to eventually group terms
of the same degree together:
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as expected.



• When n is odd: (bn2 c = n−1
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2 , bn+1
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2 + 1)

Here we will take out the first term (k = 0) of the first sum, and the last term (k = n−1
2 )

of the second sum:
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as before.


