| have two possible solutions. This one will yield a conservation of momentum with all values of n (n is
the inverse of the ratio —e.g. 0...0.3 and is a function of time; wsw1i is the initial velocity of fw1):
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The problem with this “solution” is that the torque of flywheel 1 is not equal to the torque of flywheel 2
times n, as it must be. Momentum is always equal to the initial momentum (conserved) and the velocity
of fw1l is equal to the velocity of fw2/n. Kinetic energy is not conserved.

The second solution yields a result that meets the mechanical constraints: torque on fw 1 = torque
fw2*n and velocity of fwl = velocity of fw2/n
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Note that the only difference is that n is now squared. With this “solution” momentum is not conserved
nor is kinetic energy, yet it yields the only possible mechanical solution.

The torque on the gear reducer housing will be tqy;-tiw1 in the same direction as ts,1. Even though this
housing is grounded to earth, torque equals delta momentum (L) over time, s0 dtgrg * lgra = T gra-

I suppose you could say that either Igq4 is huge (e.g. earth), therefore ¢4 is immeasurably small, or, if
the gear reducer (grd) is grounded to something like a space satellite, then Ig4 will be in the realm of
significant and cwgq Will likewise be significant. In any case, it can’t be ignored and does explain the
“lost” momentum.

This appears to work; However kinetic energy still seems not to be conserved, which of course it must
be.






