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Formulation and Solution of a Relativistic Harmonic Oscillator 
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There appear to be several forms of the relativistic harmonic oscillator published in the 
literature that may not agree. Curiously, the harmonic oscillator problem is not 
extensively treated in textbooks as might be expected.  My interest in this subject arose 
from reading a Google file on the subject full of errors and subjective opinions.  It 
certainly does reinforce idea of ‘buyer beware’ when taking net assertions as gospel.   
 
My interest here is to properly define the relativistic harmonic oscillator problem and 
then solve it by some means. 
 
The problem context is this: an oscillator consisting of a proper mass m oscillates along 
the x-axis in periodic or quasi-periodic motion.   The two inertial reference frames are the 
laboratory frame in which the classical restoring force is kx, where x is the mass 
displacement from the origin, and the particle inertial frame in which the particle is at 
rest. 
 
The classical limit is the well-known equation 
 
 0mx kx   (1.1) 
 
In addition to the particle mass, the Hook’s Law spring constant k appears as the only 
other parameter defining the problem.   
 
As is well-known, the solutions to this second-order linear equations are sines and 
cosines oscillating at a frequency 
 

 
k

m
   (1.2) 

The selection of sines and cosines will depend on the initial conditions chosen. 
 
Let us now  generalize (1.1) to describe relativistic motion of the mass.   
 
Textbooks1 show that the covariant form of the equations of motion transform as 4-
coordinates in special relativity.  In any inertial system; 
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 (1.3) 

                                                
1 C. Moller, The Theory of Relativity, Oxford at the Clarendon Press, 1952.  p.73,  et seq. 
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The first of these reveals the time derivative of the momentum equals the force and the 
second shows conservation of energy where u is the vector direction of the particle.  In 
our case u has only an x component and describes the relative speed of the two inertial 
frames.  (Special relativity holds because at any proper time t, one can always find a 
Lorentz transformation from the laboratory to the particle reference frame and vice versa 
since the meaning of the coordinates does not change.  This situation of course is not true 
in general relativity where space-time depends on gravity.) 
 
As emphasized above, (1.1) represents a description of the harmonic oscillator in the 
laboratory frame in which the origin of the restoring force will be placed at the origin.  
One could alternately describe the oscillator from the particle inertial frame by 
introducing the proper time  as measured by a clock moving with the particle.  Then the 
force must also be modified to account for the change in measuring rods and clocks when 
comparing the two inertial frames.  The result is the equation of motion as described in 
the particle frame as the origin swings back and forth. 
 

 

2

2

2

2

1

1

dp F

d u

c

u
d dt

c









 



 (1.4) 

The second expression shows that a clock in the inertial frame appears to run slower than 
the proper clock. 
 
Now we have a Lorentz covariant form of the equation of motion which can now be 
solved. 
 
When written out in one dimension, the result in the laboratory frame is: 
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 (1.5) 

Remember that m is the proper mass. 
 
Let w be a non-dimensional length: xc and  = a non-dimensional time. After 
carrying out the indicated derivatives in (1.5) and noting that the acceleration is in the 
same direction as the force, we find the second order dimensionless equation: 

  
3

2 21 0w w w    . (1.6) 

It is clear from this form that the classical limit is easily recovered when dw/d is small 
everywhere compared to 1.   
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One constant of the motion is obtained by multiplying (1.8) through by dw/d to obtain a 
Hamilton-Jacoby form of the motion equation: 
 

  
3

2 2 2 22
01w w w w     (1.7) 

 
By examining the dimensionless variables, one can also see that the constant of the 
motion w is related to the maximum extension x0 of the harmonic oscillator. 
 

 

2

20
0

1
2 2
0

0 2
2

2

x
w

c

kx
w

mc

 
 

 

 
  

 

 (1.8) 

This expression reveals the relativistic regime: When the maximum potential energy 
becomes comparable to the rest energy of the particle, we find strong departures from the 
classical limit.  Since the rest energies of most particles are in the MeV region, one 
appreciates that the nature of the relativistic departure will only happen to very strongly 
bound particles—such as harmonic motion of nuclear material.  It is probable that very 
strongly excited ‘liquid drop’ nuclei might oscillate in the relativistic regime before 
breaking up. (This statement is true for MeV neutron-induced fission in the actinides.  
However for the odd nuclei, the fission threshold drops into the hundred volt region, 
hence the need to moderate fissile neutron energies in order to sustain a critical reaction 
in 235U  as in a nuclear reactor, for example). 

It turns out that while (1.7) is helpful in understanding the problem, it is not particularly 
useful to set up a numerical solution.  It is better to work with (1.6) by regarding it as a 
pair of first order differential equations. Then there are a number of ODE (ordinary 
differential equation) packages available ( in MATLAB, say) to render a numeric 
solution.  

The pair of equations useful in numerical ODE solvers is: 
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, (1.9) 

subject to the initial conditions, y(0) = 0, w(0) = w0. 

This pair of equations has been integrated using a standard MATLAB routine (ODE45) 
for  extending through several periods.  

Apart from starting the problem for the mass at its maximum extension from the force 
center, the dimensionless displacement took values of 0.1, 0.3, 0.5, 0.7, and 0.9.  These 
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numbers also give the ratio of the potential energy to the particle mass energy according 
to the second member of (1.8). Thus the ratios are 0.005, 0.045, 0.125, 0.245 and 0.405. 

Both the amplitude 
and period have 
relativistic shifts, 
but in this first set 
of plots, the relative 
excursions all have 
the same magnitude 
so that the nature of 
the relativistic 
period shifts would 
be more visible. 

 

 

 

 

The color codes indicate the initial state expressed as the ratio of the potential energy to 
the particle mass energy. 

 As one expects, the 
oscillation period 
depends on the ratio 
of the maximum 
potential energy to 
the particle mass-
energy.  As the 
latter approaches 
the former, the 
motion period 
lengthens.  Such 
behavior is 
expected since 
harmonic motion is 
a clock viewed from 
the laboratory frame 
and the period 
lengthening indicates the clock appears to be running more slowly – typical time dilation.  
But the relativity effect also shows up as a broadening of the transition as it picks up odd 
harmonics.   
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This plot is the same as above, but with the amplitude normalization eliminated.  Clearly 
increasing anharmonicity is accompanied by increased displacement, ultimately leading 
to the failure of Hook’s Law and subsequent fission. 

This model might represent nuclear fission of a ‘liquid drop’ model along the reaction 
coordinate x.  In that case the mass m is actually the mass defect m of the actinide.  And 
the model shows that as the ratio of the maximum potential energy approaches the mass 
defect energy mc2, the nucleus goes unstable.   Now this model is admittedly a 
simplification since the spring constant k is not a constant in this circumstance but 
depends in a complicated way on the state of distension.  In other words it is no longer a 
simple harmonic oscillator.  More oscillatory motion occurs not just along the reaction 
coordinate but also in more complicated modes probably all described by a three-
dimensional harmonic oscillator.  Mode mixing will be an important feature of the 
fissioning process thus leading to several possible paths that result in disintegration of the 
nucleus. 
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