
2. Description of the ground-state wave-function

2.2 Gross-Pitaevskii equation: a variational derivation

To derive Gross-Pitaevskii equation, we start from the general hamiltonian:

H =
N∑

i=1

p2
i

2m
︸ ︷︷ ︸

kinetic

+
N∑

i=1

V (ri)

︸ ︷︷ ︸

trap

+
1

2

N∑

i=1

N∑

j 6=i

U(|ri − rj|)
︸ ︷︷ ︸

interactions

(I.16)

and compute the energy with the following variational wave-function: it considers that all
atoms are in the lowest energy level, the wave-function of which is denoted by φ0(r):

|ψ(r1, r2, . . . , rN)〉 = |φ0(r1)〉 ⊗ |φ0(r2)〉 ⊗ · · · ⊗ |φ0(rN)〉 (I.17)

Interactions actually induce correlations and at T = 0 the condensed fraction is not 1 because
interactions can couple the ground-state to excited state but this approximation is fairly
good for dilute gas. At non-zero temperature, we should rather describe the system using a
density-matrix formalism. The derivation of GP equation relies on the variational method.
The energy functional E[ψ] = 〈ψ|H|ψ〉/〈ψ|ψ〉 has a minimum E0 for the true ground-state
wave-function |ψ0〉. When making a small variation ψ → ψ + δψ, the normalization of |ψ〉
may change. In order to work in the subspace of normalized wave-functions, we introduce
a Lagrange multiplier µ, which will appear to be equal to the chemical potential at the
end of the calculation. We thus rather minimize the functional F [ψ] = 〈ψ|H|ψ〉 − µ〈ψ|ψ〉.
Let us compute the different terms using (I.17). We choose φ0(r) ≡ φ(r) to be normalized
(
∫
dr|φ|2 = 1) and assumes that it vanishes at the boundary of the integration volume. The

kinetic term reads (p = −i~∇):

〈ψ|
N∑

i=1

p2
i

2m
|ψ〉 =

N∑

i=1

~
2

2m

∫

dri∇φ∗(ri)∇φ(ri)

= +N
~

2

2m

∫

dr|∇φ(r)|2 = −N ~
2

2m

∫

drφ∗(r)∆φ(r) (I.18)

potential term:

〈ψ|
N∑

i=1

V (ri)|ψ〉 = N

∫

drφ∗(r)V (r)φ(r) (I.19)

interaction term:

〈ψ|1
2

N∑

i=1

N∑

j 6=i

U(|ri − rj|)|ψ〉 =
1

2

N∑

i=1

N∑

j 6=i

∫

dri

∫

drjφ
∗(ri)φ

∗(rj)U(|ri − rj|)φ(rj)φ(ri)

=
N(N − 1)

2

∫

dr

∫

dr′φ∗(r)φ∗(r′)U(|r − r′|)φ(r′)φ(r)

(I.20)

Lagrange multiplier term (written in a way to get the variations easily):

µ〈ψ|ψ〉 = µ

(∫

drφ∗(r)φ(r)

)N

(I.21)
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Chapter I. Bose-Einstein condensation

Now, we make a small variation of our unknown wave-function φ(r) → φ(r) + δφ(r). φ is
a complex function, instead of varying the real and imaginary parts, we take φ and φ∗ as
independent variables. The functional derivatives δ{. . .}/δφ∗ are easily computed for terms
(I.18), (I.19). For the interactions term, there is two contributions from each φ∗ but the r
variable can be permuted which removes the factor 2:

N(N − 1)

∫

drδφ∗(r)

(∫

dr′|φ(r′)|2U(|r − r′|)
)

φ(r) (I.22)

For the chemical potential, we have:

δ〈ψ|ψ〉
δφ∗

= N

(∫

drφ∗(r)φ(r)

)N−1 ∫

drδφ∗(r)φ(r) = N

∫

drδφ∗(r)φ(r) (I.23)

Collecting terms, we find for the variation:

δF [φ, φ∗]

δφ∗
= N

{

− ~
2

2m
∆φ(r) + V (r)φ(r) + (N − 1)

(∫

dr′|φ(r′)|2U(|r − r′|)
)

φ(r) − µφ(r)

}

= 0

(I.24)

Thus, what is inside the brackets must vanish and the resulting equation is the Gross-
Pitaevskii one. It is usually more tractable for a point-contact interaction U(r − r′) =
U0δ(r − r′), with U0 positive or negative (see models for interactions between atoms), and
using N − 1 ≃ N , it has the nice form:

− ~
2

2m
∆φ(r) + V (r)φ(r) +NU0|φ(r)|2φ(r) = µφ(r) (I.25)

It resembles a time-independent Schrödinger equation Ĥφ = Eφ except that it has a non-
linear ”self-trapping” term NU0|φ(r)|2 coming from the mean-field approximation and the
right hand side is the chemical potential rather than the energy per particle E/N . People
often remove the N factor by changing the normalization of φ(r) using Ψ(r) =

√
Nφ(r). We

can also check that µ = δE/δN . Indeed, we have

δE

δN
=
∂E

∂N
+
δE

δφ

∂φ

∂N
(I.26)

but δE
δφ

= 0 because φ is the variational solution. All terms in the energy are linear in N but

the interaction one which is proportional to N(N − 1)/2 and gives after derivation N − 1/2

∂E

∂N
= (non-interacting terms) + (N − 1/2) × (interaction term) . (I.27)

On the other side, multiplying (I.25) by φ∗(r) and integrating over r gives

µ = (non-interacting terms) + (N − 1) × (interaction term) . (I.28)

and since N − 1 ≃ N − 1/2, we may identify µ to δE/δN .
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2.3 Variational solution of Gross-Pitaevskii equation

φ(r) =
1

π3/4(ησ)3/2
e−(x2+y2+z2)/2η2σ2

(I.29)

∫ +∞

−∞

dx e−x
2

=
√
π (I.30)

∫ +∞

−∞

dxdydz φ(r)4 =
1

(2π)3/2(ησ)3
(I.31)

∫ +∞

−∞

dxdydz x2φ(x, y, z)2 =
(ησ)2

2
(I.32)

∫ +∞

−∞

dxdydz

∣
∣
∣
∣

∂φ

∂x

∣
∣
∣
∣

2

=
1

2(ησ)2
(I.33)

2.4 Stability of the BEC for repulsive and attractive interactions

Etot =
3

4
N~ω0

[
1

η2
+ η2 +

χ

η3

]

with χ =
2

3

√

2

π

(
aN

σ

)

(I.34)

2.5 The Thomas-Fermi regime

useful relations:

trap length scale: σ =

√

~

mω0

(I.35)

scattering length: a , U0 =
4π~

2

m
a = 4π ~ω0 aσ

2 (I.36)

healing length: ξ0 =
1√

8πn0a
(I.37)

Radius in Thomas-Fermi regime: R ≃ σ

(
aN

σ

)1/5

(I.38)

Inter-particle distance: d ≃ RN−1/3 (I.39)

2.6 The healing length

3 Time-dependent Gross-Pitaevskii equation
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Chapter I. Bose-Einstein condensation

3.1 Let us try from the Schrödinger equation

The Schrödinger equation for N -particles reads:

i~
∂ψ

∂t
= − ~

2

2m

N∑

i=1

∆riψ +
N∑

i=1

V (ri, t)ψ +
1

2

N∑

i=1

N∑

j 6=i

U(ri − rj)ψ (I.40)

with ψ(r1, . . . , rN , t) the many-body wave-function. Note that the external potential V can
depend on time (the interaction term could also depend on time). To derive time-dependent
Gross-Pitaevskii equation, we now take the same ansatz as for the time-independent one
except that now we have the time depedence:

|ψ(r1, r2, . . . , rN , t)〉 = |φ(r1, t)〉|φ(r2, t)〉 · · · |φ(rN , t)〉 (I.41)

Up to i~, the left-hand term reads

∂ψ

∂t
=

N∑

i=1

φ(r1, t) · · ·
∂φ(ri, t)

∂t
· · ·φ(rN , t) (I.42)

We want an equation on φ(r, t) only. To get it, we integrate over all other particles but
the first one. To do so, we multiply left and right terms by

∫ ∏N
j=1 drjφ

∗(rj, t) and use the

normalization constraint
∫
drj|φ(rj, t)|2 = 1. The right hand side and non-interacting part

of the right-hand side is simply reduced to

N

∫

drφ(r, t)∗
{

i~
∂φ(r, t)

∂t
− ~

2

2m
∆φ(r, t) − V (r, t)φ(r, t)

}

(I.43)

The interactions contribution reads:

N∑

i=1

∫ N∏

j=1

drjφ
∗(rj)

N∑

k 6=i

(
∏

l 6=i,k

φ(rl)

)

U(ri − rk)φ(ri)φ(rk)

The contribution on the ith particle is:
∫ N∏

j=1

drjφ
∗(rj)

N∑

k 6=i

(
∏

l 6=i,k

φ(ri)

)

U(ri − rk)φ(ri)φ(rk) =

∫

driφ(ri)
∗
∑

k 6=i

∫

drk|φ(rk)|2U(ri − rk)φ(ri)

=

∫

driφ(ri)
∗(N − 1)U0|φ(ri)|2φ(ri)

where we took a delta interaction U(ri − rk) = U0δ(ri − rk) in the last equality. Collecting
terms, we find:

N

∫

drφ(r, t)∗
{

i~
∂φ(r, t)

∂t
− ~

2

2m
∆φ(r, t) − V (r, t)φ(r, t) − 1

2
(N − 1)U0|φ(r, t)|2φ(r, t)

}

= 0

(I.44)

But what can we infer from that? It is however tempting to say that the term within brackets
is zero. But this is not true because the interaction term would have a 1/2 factor which does
not correspond to the correct equation. The derivation can be done more properly using
variational principle.
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3. Time-dependent Gross-Pitaevskii equation

3.2 Variational derivation of time-dependent Gross-Pitaevskii equation

The derivation of the time-dependent GP equation relies on the minimization of the action.
This is the least action principle. For a single particule, we may write the action S:

S[ψ] =

∫ t2

t1

dt

∫

dr L(ψ, ψ∗, ψ̇, ψ̇∗,∇ψ,∇ψ∗) (I.45)

with ψ̇ = ∂ψ/∂t. Assuming that ψ vanishes at the boundaries of the integration volume
and that the variations satisfy δψ(t1, r) = δψ(t2, r) for all points r, it is easy to derive the
Lagrange equations for the Lagrangian:

− ∂

∂t

∂L
∂ψ̇∗

+
∂L
∂ψ∗

−∇ ·
(

∂L
∂∇ψ∗

)

= 0 (I.46)

the last term is a scalar product
∑

j=x,y,z ∂j

(
∂L

∂(∂jψ∗)

)

. The Lagrange formalism should give

back the correct equation of motion which is nothing but the Schrödinger equation. For
that, we must choose the good L. For a single particle in a trap:

L = i
~

2

[

ψ∗ψ̇ − ψ̇∗ψ
]

− ~
2

2m
∇ψ∗∇ψ − ψ∗V (r, t)ψ (I.47)

You can check that applying (I.46) gives the Schrödinger equation. In the case of many
particles, the action and Lagrangian can easily be generalized to N -particles making the
Lagrangian depends on all ∇riψ where ri is the position of the ith particle and the integration
inside the action running over all particle positions

∫
dr1 · · · drN . The Lagrange equation is

− ∂

∂t

∂L
∂ψ̇∗

+
∂L
∂ψ∗

−
N∑

i=1

∇ri ·
(

∂L
∂∇riψ

∗

)

= 0 (I.48)

with ψ(r1, . . . , rN , t) the many-body wave-function. The good choice for our many-body
Lagrangian is now

L = i
~

2

[

ψ∗ψ̇ − ψ̇∗ψ
]

− ~
2

2m

N∑

i=1

∇riψ
∗∇riψ−

N∑

i=1

ψ∗V (ri, t)ψ−
1

2

N∑

i=1

N∑

j 6=i

ψ∗U(ri−rj)ψ (I.49)

Applying the Lagrange equations (I.48) to (I.49) gives the Schrödinger equation that we
expect:

i~
∂ψ

∂t
= − ~

2

2m

N∑

i=1

∆riψ +
N∑

i=1

V (ri, t)ψ +
1

2

N∑

i=1

N∑

j 6=i

U(ri − rj)ψ (I.50)

Note that the external potential V can depend on time (the interaction term could also
depend on time).

To derive time-dependent Gross-Pitaevskii equation, we now take the same ansatz as for
the time-independent one, namely

|ψ(r1, r2, . . . , rN , t)〉 = |φ(r1, t)〉|φ(r2, t)〉 · · · |φ(rN , t)〉 (I.51)
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Chapter I. Bose-Einstein condensation

so that

ψ̇(r1, r2, . . . , rN , t) =
N∑

i=1

φ(r1, t) · · ·
∂φ(ri, t)

∂t
· · ·φ(rN , t) (I.52)

We the help of the previous calculations done for the try with the Schrödinger equation, we
find for the total action:

S[φ] = N

∫ t2

t1

dt

∫

dr

{

i
~

2

[

φ∗∂φ

∂t
− ∂φ∗

∂t
φ

]

− ~
2

2m
∇φ(r, t)∗∇φ(r, t)

−V (r, t)|φ(r, t)|2 − 1

2
(N − 1)U0|φ(r, t)|4

} (I.53)

The action of the N -particles many-body system has reduced to N -times the action of a one-
particle system. This is mean-field theory. This action is called the φ4 model and appears
quite often in physical models. Using the Lagrange equations on (I.53), one finds:

i~
∂φ

∂t
= − ~

2

2m
∆φ(r, t) + V (r, t)φ(r, t) + (N − 1)U0|φ(r, t)|2φ(r, t) (I.54)

Note that the factor 1/2 in the interaction term drops because of the (φ∗)2 dependence of the
|φ|4 term. It is important to understand that this is an equation of motion for the system
so it resembles more a Schrödinger equation than the time-independent GP equation. In
particular, one can calculate the spectrum of excitations E(k) = ~ω(k) with this equation.

3.3 Linearization and Bogoliubov spectrum

3.4 Solitons
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