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SOLUTION 1
The second order differential equation (1) above is the special Bessel equation whose solution is:
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Where A and B are arbitrary constants and J and Y are the Bessel functions of the first and second
kind, respectively. Differentiating once we obtain:
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Using the initial condition, y(1) = 0, we have;
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SOLUTION 2

If, however;
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Using the initial condition, y(1) = 0, we have:
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We now compare solution (2) and (3) with the numerical solution (Runge-Kutta-Fehlberg with
h = 0.01) in the graph below. The numerical solution for h = 0.1 is: y(2) = 6.747927. When the

grid is refined, we obtain: y(2) = 6.7096647805. Both exact solutions will have hit discontinuity
by the time and are unmatched.
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Graph 1: Graph of y(t) satisfying: dy = y2 + t2. The numerical solution ( ), the exact

dt

solution 1 ( ) and the exact solution 2 (————).




