
ABSTRACT

ANALYSIS AND SYNTHESIS OF
GENERAL PLANAR INTERFEROMETER ARRAYS

Neil J. Malloy

Litton-Amecom
College Park, MD 20740

This paper presents the first theory for
general planar radio interferometers. Previous-
ly published results for the three antenna
linear inteferometer are completely generalized
to interferometers consisting of any number of

antennas in arbitrary planar configurations.
For any interferorneter in this much wider class,
the maximum likelihood bearing estimation algor-
ithm can be derived, and its performance calcula-
ted using the results derived here. The antenna
phase centers are viewed as generating a two
dimensional lattice in the array plane. This
lattice is the dual or reciprocal of the lat-
tice in the direction cosine plane consisting of
all direction cosine pairs which represent
angles which are ambiguous with the array bore—
sight, It is shown that the likelihood function
for the unknown integer portions of the phase
measurements can be reduced to an integer quad-
ratic form which represents a generalized dis-
tance squared between an (N—2) dimensional pro-
jection of the phase measurement and the points
of a lattice in phase space. The ambiguity reso-
lution procedure is thus reduced to determining
the closest lattice point to a given point.

INTRODUCTION

Phase interferometry is a commonly used
technique for extracting information about the
direction of a narrowband point radio source from
the signals received by an array of antennas. If
the received signal phase is measured without
error at two different antennas, the difference
between the two absolute phase measurements will
be equal, in units of cycles, to the fractional
part of the product of the antennas' separation
in wavelengths and the cosine of the angle be-
tween the emitter direction and the line on which
the two antennas lie. If the possible range of
this direction cosine exceeds the reciprocal of
the spacing in wavelengths, then the single rela-
tive phase measurement is ambiguous in the sense
that it implies multiple values for the direction
cosine. By using multiple antenna—pairs in a
suitable geometric configuration, it is a simple
matter to ensure that the mapping from the set of
possible direction cosine pairs onto the set of
relative phase measurement vectors is one—to—one

and therefore invertible by a doa estimation algo-
rithm. Determining a unique source direction from
a given relative phase measurement vector involves,
at least implicitly, determining the unmeasured
integer portions of the relative phase measurements
between all antennas pairs, This part of the dir-
ection of arrival estimation procedure is referred
to as ambiguity resolution.

In practical applications errors arise due to
several factors most notably receiver noie, varia-
tions in the phase response of the antennas, and
spatial variation in the electromagnetic field
produced by the incident plane wave at each point
in the array, due to a radome, for example. The
latter two types of errors may be viewed as random
variables if one considers the actual system reali-
zation as a sample from a large ensemble of identi-
cally manufactured systems. When all a priori
knowledge about the various error sources is ex-
pressed in a joint conditional probability distri-
bution function for the phase measurements given
a true doa, the maximum—likelihood estimator can
be described, This is done with variation in

(1) —(4). (1) and (2) assume that the only error
source is additive gaussian receiver noise, inde-
pendent from channel to channel, For this assump-
tion, a sufficient statistic consists of the detec-
ted I and 0 amplitudes at each antenna's receiver.
The likelihood function is multimodal, with local
maxima corresponding closely to directions of
arrival which imply exact phase measurements which
differ by integer numbers of cycles, An exact maxi-
mum likelihood estimate for this case can thus be
obtained by integrating the envelopes of tha I and
O components of each antenna signal, and then maxi-
mizing the multimodal likelihood function for these
measurements by some sort of iterative search which
is exhaustive enough to always find the global maxi-
mum. Most practical estimation procedures achieve
some simplification by assuming that the errors in
the phase measurement due to receiver noise are
gaussian random variables independent of the true
doa. Kendall (1) derived a procedure for the three
antenna linear array which involves computing maxi-
mum likelihood estimates for the absolute phase at
each antenna's receiver, but then treats the result-
ing estimates as gaussian r,v.'s. The likelihood
function for the direction of arrival then can be
expressed as a quadratic form, which must be maxi-
mized over two variables, one discrete and one
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continuous. The two parts of the problem can be
shown to separate into a one dimensional dis-
crete problem (ambiguity resolution) and a
continuous two dimensional least squares prob-.
len. Analgorithmisdescribed in (1), and its
performance for different antenna spacings is
derived. Behery and MacPhie present a method

for N—antenna evenly spaced arrays using cross
correlation to obtain a relative phase measure-
ment. They also treat these estimates as
gaussian random variables, and maximize the like-
lihood function byaniterative search.

In (3) and (4) the interferorneters consid-
ered use crosscorrelation to obtain relative
phase measurements, which are then approximated
as gaussian random variables, with errors due
to both noise and implementation factors. The
results of these investigations follow (1) in
the case of the three antenna linear interferon—
eter. (3) also presents algorithms for linear
interferometers with more than three antennas.
In these cases the decision space for the ambig-
uity resolution decision is multidimensional,
and the algorithms described are nonoptimal for
the assumption of gaussian phase errors. Planar
interferometers are discussed in (4) and (5).
In (4) consideration is restricted to arrays of
five antennas which consist of two orthogonal
linear arrayswith a common center element. The
ambiguity resolution procedure described, which
merely treats each three antenna sub—array inde-
pendently, is not optimal if a common measurement
is used in both parts of the algorithm. Hanson
(5) considers arbitrary arrangements of antennas
in a plane, and describes algorithms for resolv-
ing ambiguity in arrays with four and five ele-
ments. For planar interferometersof four and
five antennas the -dimension of the decision space
in the ambiguity resolution process is one and
two respectively, and Hanson's results are analo-
gous to Goodwin's in that the four element algo-
rithms are optimal, but those for the five element
case are not.

The analysis presented in this paper is based
on the same assumption made in (1)—(4), that the
phase measurements may be approximated as a multi..
variate gaussian random vector. The maximum like-
lihood direction of arrival estimator is then com-
pletely described for any N—antenna planar inter-
ferometer. The ambiguity resolution part of the
estimation algorithm is shown to be essentially to
find the closest point in a lattice to a project-
ion of the measurement vector. This interpreta-
tiön of the problem has allowed the application of
many results from the Geometry of Numbers, and has
greatly simplified the synthesis of general planar
interferometers.

PROBLEM FORMULATION

We consider here interferometer arrays of N+1
antennas in a plane. Phase errors arising from all
sources are assumed to be treatable as gaussian
random variables, independent from antenna to an—
emma, and independent of.the incident wavefront
bearing. We also assume for convemience that the
phase measurements are made simultaneomsly. In

this way we do not need to devote diascusion to the
selection of a set of baselines from the N(N÷1)/2
possibilities. Any N baselines which, if viewed as
a graph, form a tree, will have equivalent perform-
ance when the phase measurements are optimally pro-
cessed. Furthermore, no advantage in performance
is obtained if ädditionàl phase comparisons are
made.

The measurement vector can be written as:

- -*--
(1) =D u+k+c

+ + +
=(dj ,d2 . . .
d.vector baselines in wavelengths
4.1Wudirection cosine vector of the

emitter.

integer vector uniquely deter-
mined by the requirement that:

04 <1

=error in the phase measurement

where:

+
c is a zero mean gaussian random vector with

covariance matrix H:

- 1
p(c) exp{—s H c}

(2ii) IRI

A convenient likelihood function is the positive
definite quadratic form:

(2) L(,I)= (_Dt_) R1(_Dt_)

which is a minimum for a given when and are
the optimum values. The problem adressed by this
paper is that of finding practical estimation algo—
riths whih will produce, for given , the values
for u and k which minimize (2). The difficulty,
of course, is the presence of the discrete vari-
ables k..

1.

THE MAXIMUM LIKELIHOOD
ESTIMATION PROCEDURE

The problem of finding efficient methods for
minimizing (2) and for determining the performance
of the optimal estimator can be treated very neat-
ly by making use of the correspondence which exists
between quadratic diophantine equations and lat-
tices. A lattice may be defined as a discrete,
finite dimensional set of vectors which is closed
under addition and subtraction. There is an ex—
tensive literature on lattices and quadratic forms
with integer variables; some references are (6)—

(8).

+ As a firzt step, note that for two points uj,
u2 in the direction cosine plane for which

= ,

for some integers z,
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Thus and cannot both be allowable direction
cosine pars if the interferorneter is to determine

a unique u given .÷ The relationship between the
allowable range of u and the array baseline goem—
etry can be stated succinctly with the aid of the

following definition: N
Two lattices A1, A2 in R are dual if:

(1) A1, A2 span the same subspace of RN
4- 4-

(2) for any x in A1, y in A2,
±4-
<x,y> is an integer.

A furthe rsult tat can easily be shown is that
if G generates A1, then

G<G,G>

will generate A2. (<G,G>. We will use
the notation:

i 3

{G} Ai
to denote a lattice in terms of a generator matrix.
Now the phase centers of the N+1 antennas generate
a lattice in the array plane. The 2x2 matrix T is
defind to be a generator for this array lattice.
Thus d is in {T} for i=,2,. .. ,N. S is defined

as the dual generator (S =T). By rewriting eqn.
(3), 4- - 4-

d.(ui_u2) D z
we can see that the set of all points in the dir..
ection cosin plane which are ambiguous with a
given point u is just the coset u-i-{S}. The4-array
phase measurements thus serve to determine u only
modulo the lattice {S}. The array must thus be
esigned such that the a priori distribution of
u is contained in some unit cell of the lattice
{S}. Without loss of generality it can be assumed
that: =S for some 0 a <1, irl,2

i.e. lies in the parallelogram whose edges are
the columns of S. +

Since the baselines d1 are in {T1 there is
a 2 x N matrix of integers, F, such that:

(5) D=TF
Inserting (4) and (5) into (1),

+ t++±
(6) ct = P co+ki-c

and doing the same in (2),
-* t.*+t

(7) L (4)-? a-k)
For fixed i, the above quadratic form is mirzL—

mixed over a for

(8) = (FR1Ftr.1?R1(.)
Inserting eqn. (8)÷into equn. (7) yields a likeli—
hood function for k alone:

respectively onto the span of At,

(11) At(AR1Aty•1AR_

(12) t = At(AR1At)_1AR_1

+4- -*t 4-

(13) L(kk) = (—;) R'(—)
Now since k is an integer vector, is in the lat-

tice {At(AR1AtY1AR_1}, i.e. lies in the N-2
dimensional lattice spanned by the N columns of the
projection matrix in the brackets. The likelihood
function (13) is then the square o a generalized

distane from the projection 4) f 4)
to the lattice

point . Minimizing (13) over k can be shown to be
equivalent to finding the closest lattice point to

if it can be shown that each lattice porint is the
projection of some

+ t+ + 2
4)0=? O+1< a0 in (0,1)

- . Nk in Z

In fact each lattice point in {A(AR1At) 1AR'}
can be shown to equal some such 4).

It will be useful to further restrict the def-
inition of A, so that:

(14) ARE B
is a matrix of integers. B then spans the lattice
of solutions to

-'-. N
(15) xinZ

Algorithms for solving such systems of linear dio-
phantine equations can be found in many books on
elementary number theory, for example (9). Since

AR*1 D B C rn

is now an integer vector, At(AR1At) is a minimal
dimension generator matrix for the lattice

{At(AR1At)1AR_1}+. N-2
Now for any m0 in Z , the general solution to

4- + . N
Bk0 m0 Ic0 in Z

is the sum of a particular solution and the

general solution to the homogeneous equation,
which by the definition of B is just

4- t+ +. 2ninZ

4- 4- t+
(16) k0= k1+P n

Since At, ?span orthogonal subspaces of RN, any
vector in B can be decomposed into the sum of its
projections onto the two subspaces.
Thus we can write:

4- t± ÷
(17) 4)=F a0+k0

=At(AR*1At)1AR_1

+?t(?R1?t)_1?R1

=At(AR_1At)1o
t+ + .1t1 ..i4-+F (a0 ÷n-i-(FR F ) FR k1)

2 . 2
We can clearly choose mo in (0,1) , in Z to
make the second term vanish, giving

(18) ;0=t0÷0 = At(AR1At)_hiio

For any lattice point then, (18) holds for some
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Thus

(9) L([)

By defining A to be an (N—2) x N matrix whose rows
span the solution space to:

i4-4- +. NFRx=0 xinR
(9) can be rewritten as:

(10) L(I[)=
()t(R_1At(AB_1At)_ 1AR1 )()

If and are defined as the projections of and
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in (0,1)2, inzN, and we can minimize equn.

(10) by projecting÷ onto as i (11), finding
the closest point in {A (R'A )1), determining
the correspondiflg value of k, and using equns. (8)
and (4) to get u. In practice, since it is more
efficient computationally to work with (N—2) dimen—
ional vectors the procedure above is not followed
exactly. A more efficient algorithm is:

1. Compute: ti
+ —2. Find closest lattice point

+
_(AR_lAt)2 m

i.e. minimize

3. Compute k:- N-2 +
k ) m k.

where Bi . i1 2 ... N-2
1 1

zir
+ ith position

4. Use equns. (8) and (4) to get u.
Step 2. is of course the most involved part

algorithm. The set of all points which are
closer to a given lattice point than to any other
are referred to as the Voronoi region of the lat-
tice. This region is the interior of a polytope,
i.e. a convex region bounded by hyperplanes (10).
Fast algorithms exists for some lattices, includ-
ing A, the lattice for ambiguity resolution of
the arrays in (2). These algorithms are derived
in (11).

CONCLUSION

The maximum likelihood bearing estimation
problem has been reduced to the problem of finding
the closest point in a certain lattice to a projec-
tion of the phase measurement vector. This has re-
sulted in the first computationally efficient im-
plementation of the ML estimat.or, and has provided
an invaluable insight into the problem of optimal
synthesis of interferometer arrays. An example of
a typical five and six antenna interferometer is
illustrated in Figures 1 and 2.
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Figure 1. Six antenna array geometry and the

array lattice generated by the antenna phase
centers.

in degrees
150

Figure 2. Probability of correctly re-
solving ambiguity versus the of the
phase measurement error.
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