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Self-Capacitance of Inductors
Antonio Massarini and Marian K. Kazimierczuk,Senior Member, IEEE

Abstract—A new method for predicting the stray capacitance
of inductors is presented. The method is based on an analytical
approach and the physical structure of inductors. The induc-
tor winding is partitioned into basic cells—many of which are
identical. An expression for the equivalent capacitance of the
basic cell is derived. Using this expression, the stray capacitance
is found for both single- and multiple-layer coils, including the
presence of the core. The method was tested with experimental
measurements. The accuracy of the results is good. The derived
expressions are useful for designing inductors and can be used
for simulation purposes.

Index Terms—Modeling of inductors, self-capacitance.

I. INTRODUCTION

T HE UPPER operating frequency of every inductor is
limited by its self-capacitance. At high frequencies, the

response of inductors and transformers is very different from
their ac low-frequency response. Skin and proximity effects
cause the winding parasitic resistance to increase with the op-
erating frequency, and the parasitic capacitance of the winding
cannot be neglected either. Therefore, an accurate prediction
of the response of inductors that operate at frequencies above
several hundred kilohertz, such as, for instance, those used
in high-frequency switching power converters, is crucial for
the design of high-frequency power circuits. Unfortunately,
the parasitic capacitances and resistances are distributed pa-
rameters, and their values depend on the operating frequency.
Therefore, the theoretical prediction of the frequency response
of an inductor is a difficult problem.

High-frequency behavior of magnetic components is widely
discussed in the literature, but mainly the aspects related
to the parasitic ac winding resistances and core losses have
been addressed [1]–[6]. Some results concerning the stray
capacitance of single- and multiple-layer coils have been pre-
sented in [7]–[12]. These publications offer some interesting
physical insights, but the results rely on some experimental
data.

The purpose of this paper is to present a new method for
predicting the stray capacitance of single- or multiple-layer
inductors and compare the theoretical and experimental results.
The proposed method is based on an analytical approach. It
can predict the stray capacitance of an inductor as a function
of a few parameters of the geometry and the number of layers.
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Fig. 1. Equivalent circuit of an inductor.

Fig. 2. Cross-sectional view of a three-layer winding.

II. M ODEL OF THE PARASITIC CAPACITANCE

Inductor windings have a distributed parasitic capacitance.
The distributed capacitance of inductors can be modeled by
a lumped capacitance connected between the terminals of the
winding, as shown in Fig. 1. The analysis in this paper is
performed for inductors made of a uniformly wound single
wire, as shown in Fig. 2. The total stray capacitance of
inductors consists of the following components:

1) the turn-to-turn capacitances between turns of the same
layer;

2) the turn-to-turn capacitances between turns of adjacent
layers;

3) the turn-to-core and turn-to-shield capacitances.

The cross-sectional view of a uniformly wound coil consist-
ing of three layers is shown in Fig. 2. The basic cell
related to the turn-to-turn capacitance is shown in Fig. 3.
From these figures, we can notice symmetries in the winding
geometry. In particular, the lines of the electric fieldE that
get out from a turn fully surrounded by other conductors go
to these conductors. No line can go to infinity if we assume
that the conductors of the coil (turns, core, and shield) are
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Fig. 3. A basic cellABCD representing the turn-to-turn capacitance.

Fig. 4. Assumed pathx(�) of an electric field lineE at angle� between
two adjacent turns.

close to each other. As a consequence of the geometrical
symmetries of the coil, the lines of the electric field must
be equally shared between the adjacent conductors. If we
consider two adjacent conductors, the elementary capacitance

between two opposite corresponding elementary surfaces
of these conductors is given by

(1)

where is the permittivity of the medium and is
the length of a line of the electric field connecting the two
opposite elementary surfaces. In the most general case, the
length is not constant, but can be a function of the location
of the elementary surface. Therefore, some coordinate system
should be selected. For a round conductor, the location of each
elementary surface can be described by one angular coordinate
, as shown in Fig. 4. As a consequence, the elementary

capacitance also depends on the angular coordinate.

III. T URN-TO-TURN CAPACITANCE

A. Structure of the Basic Cell

A basic cell that forms the turn-to-turn capacitance
is shown in Fig. 3. It can be seen that the basic cell is the same
for two adjacent turns of the same layer and two adjacent turns
of different layers. Therefore, the inner part of the winding can
be divided into identical basic cells. Only the cells adjacent
to the core and shield differ from the turn-to-turn cells. Yet,
as a first-order approximation, we can consider all the basic
cells identical. They include a portion of the perimeter of the
turn, which corresponds to an angle of rad, as shown in
Fig. 3. Hence, in order to obtain the turn-to-turn capacitance,

Fig. 5. Elementary cylindrical surface located inside of the insulating coat-
ing.

(1) must be integrated over the angle . This is true for
turns fully surrounded by other conductors because of the
symmetries, as can be seen from Figs. 2 and 3. As a first-order
approximation, the same angle can also be used for turns not
completely surrounded. This approximation is equivalent to
neglecting the fringing effects.

For the basic cell shown in Fig. 3, three different regions
are crossed by the lines of the electric field: two insulating
coatings and the air gap between them. The elementary ca-
pacitance between adjacent turns is, therefore, equivalent
to the capacitance of a series combination of three elementary
capacitors, each with a uniform dielectric material. The first
capacitor is related to the insulating coating of the first turn,
the second capacitor is related to the air gap, and the third
capacitor is related to the insulating coating of the second
turn. The conductor surface can be considered an equipotential
one with a good approximation. Therefore, the lines of the
electric field must be orthogonal to the conductor surfaces. If
the thickness of the insulating coatingis much lower than
the outer diameter of the wire, including insulation , we
can approximate the paths of the electric field in the insulator
by the insulator thickness, as shown in Fig. 4.

It is more difficult to evaluate the paths of the electric
field in the air gap between adjacent turns. The shortest
possible paths can be used as a conservative approximation.
These paths are given by segments parallel to the line that
connects the centerlines of the turns under consideration. One
of these segments is depicted in Fig. 4, along with its angular
coordinate . This approximation is valid for small values
of , which give the greater contributions to the turn-to-turn
capacitance. For increasing values of, the error caused by the
approximation increases, which leads to somewhat larger than
actual capacitances at relatively bigger values of. However,
the contribution to the turn-to-turn capacitance of the surfaces
at increasing values ofalso decreases, and the error becomes
negligible.

B. Capacitance of the Insulating Coatings

Let us derive now an expression for the capacitance of the
insulating coatings. Fig. 5 shows an elementary cylindrical
surface located between the conductor surface and external
coating surface. The elementary capacitance related to the
cylindrical coating shell is given by

(2)



MASSARINI AND KAZIMIERCZUK: SELF-CAPACITANCE OF INDUCTORS 673

Integrating this equation for ranging from the radius of the
conductor without the coating to the outer radius of the
wire, including coating , and for from zero to the turn
length , one obtains the capacitance of the insulating coating
related to an elementary angle:

(3)

Therefore, the capacitance per unit angle of the part of the
basic cell corresponding to the insulating coatings is given by

(4)

C. Capacitance of the Air Gap

From geometrical considerations in Fig. 4, the length of the
assumed paths as a function ofis given by

(5)

The elementary surface of the wire, including coating (in the
form of an elementary ring of length), is

(6)

and the elementary capacitance per unit angle is

(7)

D. Total Capacitance of the Basic Cell

The series combination of the elementary capacitances (4)
and (7) is given by

(8)

where . Integration of (8) in the basic cell gives the
overall turn-to-turn capacitance

(9)

Fig. 6. Capacitances of the basic cell.

IV. TURN-TO-CORE CAPACITANCE

Equation (9) can also be used to calculate the turn-to-
core and/or the turn-to-shield capacitances. Since the core
is at a constant potential and located on the vertical plane
of the symmetry depicted in Fig. 4, the path lengths of the
electric field lines in the air gap between the turn and plane
conductor are one half of the path lengths in the air gaps
between two adjacent turns. The basic cell of the turn-to-core
capacitance is wider than the turn-to-turn basic cell. A portion
of the perimeter of the turn, which corresponds to an angle of

, is included in the turn-to-core basic cell, as can be seen
from Fig. 2. Nevertheless, for the sake of simplicity and as
a first-order approximation, we can consider the turn-to-core
basic cell to be the same as the turn-to-turn basic cell. As a
consequence, a similar derivation to that given in Section III
yields the turn-to-core capacitance

(10)

V. SIMPLIFYING APPROACH

We propose here a reasonably accurate simplifying approach
that leads to an expression for the turn-to-turn capacitance that
is much easier to use than (9). Fig. 6 shows plots of (7) in the
dashed line, (4) in the dashed/dotted line, and (8) in the solid
line. From Figs. 4 and 6, it can be seen that for , the path
of the electric fieldE in the air gap is equal to zero, and the
corresponding elementary capacitance given by (7) approaches
infinity. The electric field lines become longer in the air gap
and the elementary capacitances smaller for increasing values
of , whereas the elementary capacitances given by (4) remain
constant all over the basic cell. Therefore, for small values of
the angle , the elementary capacitances of the air gap are
much larger than the series combinations of the elementary
capacitances of the coatings. Yet, the elementary capacitance
of the air gap can become much smaller than the series
combination of the elementary capacitances of the coatings
when assumes larger values. The turn-to-turn capacitance
given by (9) corresponds to the area below the solid curve of
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Fig. 6. The dashed and dashed/dotted curves in Fig. 6 cross
each other at an angle . Thus, we can approximate the
area below the solid curve with the sum of the area below
the dashed/dotted curve until the crossing point atand
the area below the dashed curve beyond the crossing point.
This approximation is still conservative because the latter area
is larger than the former one. As a consequence, the basic
cell of Fig. 3 can be partitioned into three parts: a
middle one within and two side parts corresponding
to and . From a computational
point of view, we can replace the equivalent elementary
capacitance (8) by the equivalent elementary capacitance of
the coatings given by (4) for and with the elementary
capacitance of the air gap given by (7) for . As
a result, we obtain the equivalent capacitance of the insulating
coatings in the middle part of the basic cell

(11)

Furthermore, integration of (7) in the side parts of the basic
cell corresponding to yields

(12)

The angle corresponding to the crossing point in Fig. 6 can
be obtained by equating (4) and (7)

(13)

where is the diameter of the conductor (excluding the
insulator). Rearrangement of this equation yields

(14)

The total capacitance of the basic cell equals the parallel
combination of the capacitances of the parts into which the
basic cell has been subdivided

(15)

where is given by (14).

VI. OVERALL STRAY CAPACITANCE

In order to determine the stray capacitance of a winding,
as depicted in Fig. 1, one can use the values of the turn-
to-turn capacitance and the turn-to-core capacitance
to calculate the equivalent layer-to-layer and layer-to-core

Fig. 7. Lumped capacitor network for a single-layer coil with a conductive
core.

capacitances of multiple-layer coils, as described in [7]. Alter-
natively, a network consisting of lumped capacitors can be
solved. In fact, in the high-frequency range, the reactance
of the shunt capacitances between turns is much lower
than the impedance of the branches, which can be
considered in a more detailed model of the winding. In this
approach and in view of the high-frequency applications, the
inductances and resistances of each turn are neglected (i.e.,
they are treated as open circuits), and a capacitor network is
assumed as the equivalent circuit for the calculation of the
overall stray capacitance of coils [13]. This approach is not
adequate at lower frequencies, where the inductive effects still
dominate.

A network of lumped capacitors obtained for a single-layer
coil wound on a conductive core is shown in Fig. 7. The
simplest case concerns a coreless single-layer winding of
turns. In this case, the total stray capacitance of the coil is
given by the equivalent capacitance of the turn-to-turn
capacitances in series

(16)

Some of the assumptions made in the previous sections are
not well satisfied in this case, and, therefore, the accuracy of
(16) is not always very good.

A. Single-Layer Coil with a Conductive Core

For a single-layer coil consisting of turns wound on a
conductive core, the lumped capacitor network depicted in
Fig. 6 must be solved. In Fig. 6, the turns are not to the scale.
They are reduced in size in order to show the capacitances
between them and the core. The conducting core (or shield)
can be regarded as a single node, where all the turn-to-core (or
turn-to-shield) capacitances are connected, and the symmetries
of the circuit can be exploited.

For coils consisting of an even number of turns, we first
consider the two turns in the middle of the coil. For these
turns, , and the network consists of the capacitance
between turns 1 and 2, , in parallel with the series
combination of the turn-to-core capacitances and .
Since , the equivalent capacitance of the
two turns is given by .

For an odd number of turns, we first consider the three
turns in the middle of the winding. The equivalent capac-
itance of the capacitor network related to can be
calculated by splitting into two halves, as depicted in
Fig. 8, and applying the transformations. The result is

. This result can
also be obtained through the observation that has no
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Fig. 8. Capacitances between three turns wound on a conductive core.

influence on the equivalent capacitance because of symmetry.
In order to obtain the overall capacitance of coils consisting
of four or five turns, we can add one more turn at each side
of the two-turn or three-turn coils. The overall capacitance is
equal to the capacitance of previous arrangements in series
with two more turn-to-turn capacitances and in parallel with
the series combination of two more turn-to-core capacitances.
For :

(17)

For :

(18)

Adding one more turn to both sides once at a time, we
can calculate the stray capacitance of coils consisting of any
number of turns. Thus, for a coil consisting ofturns, we have

(19)

where is the stray capacitance of the coil consisting
of turns. It can be seen that the values calculated from
(19) for an increasing number of turns constitute a sequence
that converges very rapidly to

for (20)

B. Two-Layer Coreless Coil

Using a similar approach to that described in the previous
subsection, we can obtain the stray capacitance for a two-
layer coreless coil. Also, in this case, under the assumptions
that the second layer has only one turn less than the first and it
is wound in the opposite direction, a sequence of capacitances
is obtained corresponding to increasing numbers of turns. The
terms of the sequence converge very rapidly to

for (21)

C. Two-Layer Coil with a Conductive Core
and Three-Layer Coil

Under the previous assumptions and when a conductive core
is also present, the overall stray capacitance of a coil ofturns
are in a sequence that converge to

for (22)

It can be seen that two-layer coils are affected by a higher stray
capacitance than single-layer coils. They are also affected by

a higher resistance at high-frequency operation. Thus, using
two-layer coils is not a good practice for inductors designed
for high-frequency operation. The overall stray capacitance
of coils with three layers decreases, but the solution of the
lumped capacitor network becomes more complicated. For a
three-layer coreless coil with a number of turns , as
depicted in Fig. 2, a sequence was calculated that converges to

(23)

It can be seen that the stray capacitance of three-layer coils
is smaller than the stray capacitance of two-layer coils. But
the proximity effect increases as the number of layers in-
creases. Therefore, single-layer inductors should be used at
high frequencies.

VII. COMPARISON OFPREDICTED AND MEASURED RESULTS

The results given by the proposed method have been
compared with those measured for several inductors. An
illustrative example is given below for a single-layer
winding inductor with a powder iron core. The coil had
95 circular turns of -mm diameter. Hence, the
turn length was mm. The
wire had an outer diameter mm with an
inner diameter of the conductor mm. The coating
thickness was, therefore, mm. The dielectric
constant of the coating material used for the nonimpregnated
coil was . Therefore, using (14), (15), and
(20), one obtains rad , pF,
and pF. Using this value and the inductance

H, the self-resonant frequency of the inductor
can be predicted as MHz.

The same inductor was measured with a HP4194A
impedance/gain-phase analyzer. The inductance measured at
a frequency of 100 Hz was H. The measured
self-resonant frequency was MHz. Hence, the total
stray capacitance can be found as pF. The error of
determining the first self-resonant frequency was 9.68%.
From this result the error of determining the self-capacitance
was 17.2%.

Using the more complicated expression (9), one obtains

pF

(24)

It can be seen that the turn-to-turn capacitance predicted by
this equation is lower than that predicted by (15). This result is
consistent with the approximation introduced for deriving (15).

VIII. C ONCLUSIONS

A method for predicting the stray capacitance of inductor
windings has been proposed herein. A simple expression for
the self-capacitance has been derived. A pocket calculator can
be used to calculate the self-capacitance. The self-capacitance
decreases with increasing thickness of the insulating coatings
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of the conductors. The proposed approach is suitable for
predicting the self-resonant frequency of inductors for both
single- and multiple-layer windings. Physical insight into the
influence of the number of turns and layers on the overall
equivalent capacitance is provided.

New contributions of this work are as follows.

1) A new method for calculating the stray capacitance of
inductors is shown.

2) Both single- and multiple-layer windings are considered.
3) The model is simple, accurate, and reliable for the

simulation and design of inductors operated at high
frequencies.
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