
J23 _- _- ll!B 
ELSEVIER Comput. Methods Appl. Mech. Engrg. 167 (1998) 369-391 

Computer methods 
in applied 

mechanics and 
engineering 

A monolithical fluid-structure interaction algorithm applied to the 
piston problem 

Frederic J. Blom 
lnstitut de Muchines Hydrauliques et Mkaniyue des Fluides, Ecole Polytechnique Fhdbale de Lmsanne, CH- lOIS Lausunne, 

Sw~itzerland 

Received 3 February 1998; revised 22 April 1998 

Abstract 

An investigation of time marching computational fluid-structure interaction algorithms is presented. The analysis is applied to the piston 

problem. Attention is focussed on the time integration properties of the coupling algorithms. The staggered scheme is first investigated 

where fluid and structure are alternately integrated by separate solvers in a predictor-corrector fashion. This algorithm suffers from a time 

lag between the integration of the fluid and structure. The influence of the time lag is investigated by the comparison of different predictions 

for the structure. A novel monolithical algorithm is then introduced in order to annihilate the time lag. This algorithm integrates fluid, 

structure and interaction as a single system by an implicit algorithm. Linear acoustic as well as nonlinear Euler equations for gas dynamics 

are investigated. The numerical results of the staggered scheme reveal a non-physical deviation of the mean position of the piston at higher 

CFL numbers. The deviation of the mean position is not present in the calculation with the monolithical scheme. Stability analysis shows the 

unconditional stability of the monolithical scheme for the acoustic equations whereas the staggered scheme has a limited domain of stability. 

This domain can be enlarged by an improvement of the structural prediction, Analysis of the damping shows an energy production in the 

staggered scheme while the monolithical scheme has no energy production term. The analyses lead to the formulation of the Interaction 

Consistency Law which prescribes the relation for the time discretisation between fluid and structure solvers and their boundary 

conditions. 0 1998 Elsevier Science S.A. All rights reserved. 

1. Introduction 

In order to calculate fluid-structure interaction in a time marching fashion both fluid and structure have to be 

integrated in time simultaneously. Often the problem is solved by means of a staggered algorithm. The fluid and 

structure are then altematingly integrated in time by separate solvers. The interaction is taken into account by 

the boundary conditions. The drawback of this method is that there always exists a time lag between the 

integration of fluid and structure. Bendiksen [I] has shown that this can lead to a loss of dynamic equivalence 

between the aero-elastic model and the numerical algorithm. 

The staggered method is introduced by Park et al. [2]. The method is used for transonic flutter calculations by 
Prananta et al. [3,4] and for incompressible fluid-structure interaction by Mouro [5]. Staggering of fluid and 

structure solvers is included in the algorithm by Pipemo [6,7]. This algorithm makes use of the characteristic 

time scales in fluid and structure solvers by choosing different time steps for both solvers. This latter method is 

adopted by Blom and Leyland [8,9]. Pipemo et al. [lo] and Farhat et al. [I 11 have investigated different parallel 
versions of the staggered schemes. An analysis of predictor-corrector algorithms with structural as well as fluid 
predictions is presented by Prananta and Hounjet [12]. Staggered schemes are also investigated by Giles for 
aero-elastic problems [13] and thermo-elastic problems [14]. He addresses the accuracy and numerical stability 
of staggered schemes with several fluid and structure solvers. 

Another interaction algorithm was proposed by Bendiksen [ 151 where the fluid and structure are integrated in 
time by an explicit fourth order Runge-Kutta scheme. There, the interaction between fluid and structure is also 
updated at every intermediate time level. This method was also applied by He [ 161 to a cascade flutter problem. 

0045-7825 /98/$19.00 0 1998 Elsevier Science S.A. All rights reserved. 
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The accuracy of this algorithm is superior to the standard staggered algorithm since the interval between 

information exchange is decreased. However, the method remains staggered. 
Recently, implicit fully coupled algorithms have gained more interest. This interest is driven by the need for 

larger time steps, hence a reduction of the computational time. Alonso and Jameson [ 171 and Melville et al. [ 181 

used an implicit algorithm to integrate the fluid and structure in time. The nonlinear system of equations is 

solved by an iterative Newton solver. To obtain full coupling they updated the interaction after every 

subiteration. The influence of the number of subiterations in this algorithm is investigated by Morton et al. [ 191. 

This algorithm also remains essentially staggered. It converges to a fully coupled scheme when the number of 

subiterations is increased. 

In this paper a monolithical algorithm is proposed in order to avoid the time lag related to staggered schemes. 

One single operator is applied to the fluid, structure and mesh variables to integrate the complete system in time. 

This operator contains the integration of the fluid, mesh, structure and interaction. The algorithm is thoroughly 

investigated and compared to several staggered algorithms. In order to concentrate on the coupling algorithm, 

the relatively simple piston problem is studied. The piston problem is described by a one-dimensional equation 
for the fluid and a one degree of freedom system for the structure. 

2. Piston problem 

In this section the piston problem is investigated analytically. The results are used to validate the numerical 

algorithms. The piston problem consists of a tube filled with a compressible fluid. The left-hand side of the tube 

is closed and on the right-hand side the piston is placed. This piston has a mass m and is supported by a linear 

spring with stiffness k. The configuration is depicted in Fig. 1. 

The fluid in the tube is considered to be inviscid and compressible. It is assumed to vary only in the x 
direction. Then the fluid is described by the one-dimensional Euler equations which read in conservative form 

where p, u, E and p denote the density, velocity, total energy and pressure, respectively. The equations are 

closed by the equation of state for a perfect gas 

p=(y- l,,[E-+(u’)] 

where y is the ratio of the specific heats. 

The boundary conditions for the fluid are given by 

u(x = 0) = 0 

u(x = L) = Li, 

where ti, is the velocity 

(3) 

of the piston.’ 

1 

Fig. 1. Piston problem. 

’ The structure variables are denoted by the subscript s. 
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The movement of the piston is described by the undamped equation of motion for a one degree of freedom 

model, 

mii,(t) + ku,(t) =f(t) (4) 

where u,(t), ii,(t) are the displacement of the structure (piston) and its double time derivative, respectively.f(t) is 
the external force. This external force is equal to the pressure difference between both sides of the piston 

multiplied by the piston surface, 

f(r) = (~5 - p,)area (5) 

where p, is the ambient pressure and pL is the pressure at x = L. Unit area is chosen for the piston. 

In order to linearise the Euler equations (l), the variables are written as a mean value and an added 

perturbation. The following notations are introduced 

p= ;+p 

u= U+u’ (6) 

p=Pfp’ 

-- 
where p, u and j(= p,) are the steady mean parts and p’, u’ and p’ are the time dependent parts of the variables. 

To linearise the equations the following approximations are made 

p’<<P 

ur KC> 

p’ <<F 
(7) 

U=O 

where c, is the isentropic speed of sound defined by 

2 dP 

c‘=ap \ 

Substituting (6), (7) and (8) in (1) and neglecting higher-order terms gives 

(8) 

(9) 

The linearised energy equation at isentropic conditions is always satisfied and is therefore omitted. Then, the 

first equation of (9) is differentiated with respect to time and the second with respect to space. This gives after 

subtraction a Helmholtz equation for the pressure, 

Now, Eqs. (4) and (10) with their boundary conditions have to be solved. First, a harmonic time dependence 

(P’ = P Lo and 11, = u elm’) is introduced. Then, the two equations read, 

2 

$+&=o 

--w”mu+ku=p 
(11) 

where K(= w/c,) is the wave number. The solution for the pressure equation is given by 

p = C, elxx + C, e-‘“x (12) 

The integration constants have to be determined by the boundary conditions at both sides of the tube. These 
boundary conditions read 
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8P - 
ax = I 

0 
r=O 

dP - 
ax t-=L = -pw*u I 

(13) 

The coupled eigenfrequencies of the piston problem are found by solving Eqs. ( 1 l), (12) and (13). This gives 

the following transcendental equation for the coupled eigenfrequency 

t&tanKL.=&/[,(l-$)] with u,,=E (14) 

This equation is used to calculate the eigenfrequency in Section 4. 

3. Numerical methods 

3.1. Acoustic jhid equations 

First, the movement of the piston is presumed to be known. Therefore the fluid flow in a tube with a 

moving end wall has to be calculated. In this section a numerical scheme for the linearised flow equations is 

presented. The acoustic equation (9) is then written in matrix form 

z+/G$=o (15) 

where 

(16) 

The domain is discretised into N nodes and N cells. The system (15) is discretised by the finite volume method. 
This gives the discretised equation for node i, 

u;” -u; 
At + 

q+,,* - q,,, 
& =o (17) 

where At = tn” - t” denotes the time step and Ax = x,+ ,,* - x,_, ,2 the cell size. The numerical flux @ is 

calculated by the first order flux splitting upwind scheme, 

@L* =A+U; I-A-U;+, (18) 

where 

(19) 

The eigenvalues of A+ are positive or zero and the eigenvalues of A- are negative or zero. The scheme is 

explicit when the flux @* in (18) is calculated with U” and implicit when calculated with IJ ‘+I. Implicit 

schemes allow for larger time steps than explicit schemes since their domain of stability is larger. In this case 
the implicit scheme is chosen since the solution at t n+’ is needed for the monolithical algorithm. The solution 

U :+’ is then calculated by 

,;+l + 2 (A+,;+’ + A-U;;; -A+Uf,’ -IA-U;+‘) = U; 

The boundary conditions are taken into account by virtual nodes at the end points x,, and x,,,+, . With the 
variables at these nodes the fluxes ~0,~~ and @,.,+ ,,2 are calculated. The variables at the virtual nodes are 

calculated by linear extrapolation (see [20]). The boundary velocity is then imposed on the value at x, and x,,, in 
the extrapolation equation. The extrapolated variable vector at x0 is then calculated by 



F.J. Blom I Compur. Methods Appl. Mech. Engrg. 167 (1998) 369-391 373 

Ii+1 
U” = 1 2U’(+‘(i) -U;+‘(l) 

-u;+‘(2) I 
(21) 

The boundary condition at the moving piston is calculated by the so-called transpiration flux at x~+,,*. This 
approach is only valid when the perturbations are small, which is a presumption of the acoustic theory (see (7)). 
A more general treatment on a moving domain is described in the next section for the nonlinear Euler equations. 

At ‘N+l the variable vector is given by 

u 
,Z + 1 

i 

2u;+‘( 1) -up,< 1) 
NLI = 

2pv* -u;“_‘, (2) I 
(22) 

where V* is the velocity of the piston, which is presumed to be known here. Eq. (20) has to be solved for the N 

nodes at every time step which gives a 2N X 2N block tridiagonal system to solve. This system is solved by the 

block Thomas algorithm which is a generalisation of the Thomas algorithm [21]. 

3.2. Euler JEuid equation3 

Next, the non-linear Euler equations are considered. For large deformations of the domain the computational 

mesh also has to be deformed. Although the movement of the piston is small in this case, the Euler equations are 
described on a general moving coordinate system to study the phenomenon. 

On general moving coordinates the equations are described by the Arbitrary Lagrange Euler (ALE) method 

[22]. The coordinates are not moving with the particles (Lagrange) neither fixed to the laboratory (Euler) but can 

move in an arbitrary way. The one-dimensional integral ALE form of the Euler equations on a moving domain 

,0(t) read 

a -I at W df4t) + fl(,, 

where the state vector W and the flux vector F are given by 

(23) 

(24) 

The contravariant velocity is defined by U = u - w. The coordinate velocity is denoted by w. Eq. (23) is closed 

by the equation of state for a perfect gas (2). 

The domain is again subdivided into N nodes and N cells. Eq. (23) is discretised by means of the finite 

volume method. The discretised equations follow directly from (23) by dividing the domain into finite volumes 

and integrating over these volumes. The numerical equation for implicit time integration is given by 

v:,+‘w:,+’ - ‘V;W; = -At(@(W;+‘, WY:,‘) - @(WY+‘, W;“,‘)). (25) 

where z/-y denotes the size of the ith cell at time t = t”. WY denotes the vector of conservative variables in node i 

at time t = tn. At is the time step between tn and t”+‘. 
dqw:“, WY;,’ ) is the numerical flux which is a numerical approximation of the flux F(x,+ , ,?). The flux is 

discretised in an upwind fashion by the flux vector splitting of Van Leer [33]. The flux vector is split into two 

parts, 

qw:+‘, WY:,‘) = @+(w:+‘) + @-(Wf;,l) 

where the Jacobian of the flux vector @+, a@’ /aW is semi positive definite and the Jacobian of the flux vector 
@ -, a@ _ /llW is semi negative definite. The Van Leer flux on a moving coordinate system, which can be found 
in [7,23], is given by 



314 F.J. Blom I Comput. Methods Appl. Mech. Engrg. 167 (1998) 369-391 

i 

1 
?2c-u 

@‘(ly)= +(u+r)z 
fU 

Y 

-u2r2uc 2c2 l.l? 
A-----+-- 

w(U T 2c) 

2 Y ! \ y-t1 +] 

where c is the local speed of sound defined by 

(27) 

c= _E d P 

All flow variables are calculated at x, except for the 

In order to calculate the numerical flux (26) at tn+’ 

used 

F=sW=JW 

The numerical flux @J:+’ ,+ ,,* is then written as 

(28) 

grid velocity which is calculated at xi+, ,* for qi, ,2. 
the homogeneous property of the flux function F, (24), is 

(29) 

c&w;+’ 
a@+ 

, WY::) =aw 
a@- 

wr+’ +aw,+, ,” 

WY;; 
1 f” 

= J+wy+’ + J-w;;; (30) 

where .I’ and J- denote the Jacobian matrices of the Van Leer fluxes. The expressions for the flux derivatives 

are given in Appendix A. The numerical implicit scheme now reads 

v,1+‘,;+’ + At(J+W;+’ +J-W;;, - J’W;:“,’ -J-W:+‘) = y;W: (31) 

where Yy is the size of the cell which belongs to node xi. In order to solve (31) as a matrix equation the scheme 
is written with VW as variables 

J+-Jp 
VW):+’ +At Y,,+, (“lrW):+’ ++, 

( , 
( VW)::,’ - $( clrw>:_‘, 

> 
= (VW): (32) 

,+I r-l 

The mesh is calculated as an equidistant distribution of the nodes over the tube length. When the mesh is moving 

the nodes remain equidistant. Therefore, the mesh velocity is calculated by a linear interpolation of the left (0) 

and right hand (V*) velocities. The mesh points and mesh velocities for i = 1, N are then calculated by 

i-l 
w:=~_1V* and xy=x:+Atwy (33) 

Next, the boundary conditions have to be imposed at the ends of the tube. As in the acoustic approach also 

virtual nodes are used to impose the boundary conditions. The conservative variables are linearly extrapolated 
from the interior. The boundary velocity is imposed at x0 and x,,, in the extrapolation equation. The extrapolated 

conservative variables at x0 are calculated by 

W,(J) = 2W,(l) - W,(l) 

W,(2) = -W,(2) (34) 

W,(3) = 2W,(3) - W,(3) 

At x,v+ 1 the extrapolated variables are calculated by 

W,+,(l) = 2W,(l) -W,_,(l) 

W,+,(2) = 2W,(t)v* - W,_,(2) 

W,+,(3) = 2W,(3) - w,_,(3) 

(35) 

where the piston velocity V* is used to extrapolate the second conservative variable pu. 
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The implicit numerical scheme (31) has to be calculated for the N nodes at every time step. This gives a 

linear block tridiagonal system of size 3N X 3N. This system is solved again by the block Thomas algorithm. 

3.3. Structure 

In this section the numerical method for the time integration of the piston is discussed. Like in the previous 

section, the problem is presented as stand alone. The force which is exerted by the fluid on the structure is 

presumed to be known. The movement of the piston is described by the undamped equation of motion for a one 

degree of freedom system (4). This equation is numerically integrated in time by the constant average 

acceleration method. This is the optimal case of the Newmark method [24], i.e. the method has no numerical 

damping and is unconditionally stable. 

First, the time domain is subdivided in discrete time steps denoted by At. Then, the assumption is made that 

the acceleration is constant in a time interval and equal to the mean of the beginning and the end of the interval, 

1 
ii,(7)=$u: +ii:+‘) (36) 

where the parameter 7 is defined by 7 = t - tn. The velocity in the time interval is obtained by integrating (36) 

which gives 

1 
u’,(7) = ti:’ + - tiii: + ii;+‘) 

2 (37) 

Next, the displacement vector is obtained by integrating the velocity 

1 
U,(7)=U:+7U:+-7Z(ii:‘+fii:l+‘) 

4 (38) 

Then, the acceleration at time t n+i is calculated by taking (38) at time t”+’ 

..n+, 4 n+, 4 
U, =7(u, 

At- 
-f+,,+ii: 

The velocity at time t ,,+’ is found with Eqs. (37) and (39), which gives 

.,lf, 2 “+I 
u, =-(& At 

- u:‘, - 1;: 

(39) 

In order to find the displacement vector at the new time level equations (38) (39) and (40) are substituted in the 

equation of motion (4) at time t” + ‘, 

($m+k)u:+~ =y+l +smu’. +;rnl;: +rnii: (41) 

From this equation the displacement at time t n+’ is solved. Then, the acceleration and velocity are calculated by 
(39) and (40). 

Next, the structural equations are written in the linear matrix form, which has to be solved every time step. 

The system is derived from Eqs. (39), (40) and (41). The system then reads 

2 
-E 10 

4 -- 
At” ’ ‘_ 

> (42) 

It turns out that the system (42) is overdetermined which means that one line is superfluous. After some algebra 
it follows that 

..n 
mu, = -ku:‘+f” (43) 
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This equation shows that the equilibrium equation (4) is satisfied at each time level. Elimination of the 

acceleration from (42) gives the reduced system 

> (44) 

Eqs. (42) and (44) are used in the next section to integrate the structure in time. 

3.4. Fluid-structure coupling 

Now that the numerical methods for fluid and structure are described they have to be coupled. First, the 
staggered approach is described in Section 3.4.1. This method integrates the fluid and structure in time by two 

separate solvers. The interaction is taken into account by the boundary conditions at the fluid-structure 

interface. Then, the monolithical approach is derived in Section 3.4.2. Here, the fluid and structure are integrated 

in time as a single system where the interaction is also included. 

3.4.1. Staggered ulgorithm 

The staggered method is the most used method to solve the fluid-structure interaction problem in the time 

domain. Farhat [25] uses this method to calculate panel flutter. Similar test cases are studied by Pipemo [7,26] 

and Blom and Leyland [9]. The flutter of airfoils with this method is studied by Rausch et al. [27], Prananta 

[3,4], Farhat and Lin [28], Pipemo [7] and Blom and Leyland [8]. The piston problem, which is studied here, 

was also studied by Piperno [6,7] in order to investigate subcycling techniques on coupling algorithms. 
The staggered method preserves the fluid and structure solvers as separate solvers. Both parts are alternately 

integrated in time. The interaction is taken into account by the boundary conditions of both solvers. As a 

consequence there exists a time lag between the integration of the fluid and structure. When the time steps are 

small the influence of the time lag can be neglected. Here, the influence of large time steps on the lagging error 

is investigated. 

There are several possibilities for a staggered algorithm. Prananta and Hounjet [12] used structural as well as 

aerodynamical predictors in the algorithms. Bendiksen [15] used a coupling algorithm in the Runge-Kutta 

scheme where the interaction was updated also on intermediate time levels. A staggered scheme with a structural 
predictor is investigated here. The algorithm is schematically depicted in Fig. 2. At time t = tn the state of the 

fluid, structure and mesh are known. The next steps are taken to integrate the fluid-structure system from t” to 
ll+1. 

t . 
(i) Predict the state of the structure at the end of the current time step (t = tn+‘). 

(ii) Integrate the fluid to the next time level using the predicted state of the structure. 

(iii) Update the structure to the next time level using the fluid pressures on the boundary. 

REMARKS 

(i) Two different predictions are applied to the problem. Prediction 1 is given by a zero order prediction 

t” 
tn+l 

Fig. 2. Staggered coupling algorithm. 

(45) 
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Prediction 2 is a first-order prediction according to 

{in+‘} zz {u”‘} + At{jj”] 

(ii) The fluid is integrated by the acoustic or Euler algorithms of Sections 3.1 and 3.2, respectively. 

(iii) The structure is updated by the algorithms described in Section 3.3. 

The crucial part in this algorithm is the prediction of the structural state in step 1. The velocity in a time step 

has to correspond to the distance covered the same time step. The structural velocity is linear in time for the 

constant average acceleration method. Therefore, the covered distance is calculated exactly by trapezoidal 

integration of the velocity. The boundary velocity in the fluid solver has then to be calculated by 

(47) 

The velocity ti:+’ is calculated by the structural prediction (45) or (46). Taking prediction 2 gives a more 

precise approximation for ti y + ’ , therefore it is expected to give better results. 

3.4.2. Monolithical algorithm 

In this section the monolithical time integration algorithm for fluid and structure is derived. Felker 129,301 

constructed a monolithical solution algorithm for static fluid-structure interaction. He used Newton’s algorithm 

to converge to static equilibrium between fluid and structure. Dynamic fluid-structure interaction contains an 

additional difficulty which is the time lag between fluid and structure which has to be avoided. Alonso and 

Jameson [17] circumvented this problem by updating the interaction every subiteration in their implicit 

algorithm. Melville et al. [18] and Morton et al. [ 191 used a similar approach. However. this algorithm also 

remains staggered. 
Dynamic fluid-structure interaction involves time dependent information transfer from the fluid to the 

structure and vice versa. This information transfer only acts on the fluid-structure boundary. On the one hand, 

the fluid pressures are transferred to the structure via the external force which acts on the structure. On the other 

hand, the velocity of the mesh is equal to the velocity of the structure at the fluid-structure interface. In the 

staggered approach which is discussed in Section 3.4.1 this information transfer is not calculated at the same 

time. In the staggered approach a prediction of the structural velocity is transferred to the fluid. If this prediction 

were exact, there would be no extra energy transfer in the staggered algorithm [7]. In the monolithical approach 
the difference is zero by definition since the whole system is implicit including the interaction. The idea of a 

monolithical algorithm is schematically shown in Fig. 3. There is no time lag in the information transfer, since 

fluid and structure are enclosed in one system. 
First, the monolithical algorithm is globally described in terms of matrix equations. After that the specific 

coupling terms in the equations are derived for the linear acoustic and nonlinear Euler solvers. 

When the fluid is implicitly integrated a linear matrix equation has to be solved for every time step. This 

equation for the fluid is written as 

[A ,]{Xj’+ ‘} = [B,.]{Xj’} + {F,-} (48) 

where X, is the vector which contains the fluid variables. The force term Fr contains the boundary condition at 

the moving piston, therefore it is a function of the structural velocity ti,. The numerical scheme for the fluid is 
enclosed in the matrices A, and B,. 

Integrate 
Fluid 

StrGture 

n=n+ 1 

Fig. 3. Monolithical coupling algorithm. 
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The implicit integration of the structure involves the same type of matrix equation has to be solved for every 

time step. This equation is written as 

[A,]{X:+’ = [4lK~ + {F,) (49) 

where X, is the vector with structure variables. The force term F, is a function of the fluid pressure. The 

matrices A, and B, contain the numerical scheme for the structure. 
Next, Eqs. (48) and (49) are written as one matrix system. The terms in the force functions Ff and F, which 

are a function of X, and X,, respectively, are expressed in coupling matrices 

(50) 

The coupling matrix Cu,, contains the implicit boundary velocity term in the fluid equation. Ca,, takes the 

implicit forcing term for the structure into account. The coupling matrices Cb,, and Cb,, are the explicit 

counterparts of the implicit Ca matrices. The force vectors Fr and F, are the residual terms which are neither a 

function of the structure nor the fluid variables. 

3.4.2.1. Acoustic equations. Next, the coupling terms for the acoustic equations are derived. The movement of 

the piston is taken into account by the virtual node. This relation is expressed in Eq. (22). The velocity of the 

piston V* in this equation is incorporated in the matrix Cu,, for implicit interaction and in Cb,, for explicit 
interaction. Eq. (47) is verified exactly since the structural velocity at tn+’ is used in the calculation of the fluid. 
When (47) is substituted in Eq. (20) with the use of the virtual node (22), the fluid equation for node N reads 

-A+U;“, +A-fJ”,+‘) = (,l; -$- (51) 

This equation expresses the discretised fluid equations at node N. In terms of Eq. (50) this means that Cu,, 

contains the terms in front of ti:+’ . The matrix Cb,, is composed of the terms in front of 1;: on the right-hand 
side of (5 1). 

Eq. (44) is used to integrate the structure, since the fluid is described by two variables per node. In this way 

the complete matrix equation (50) is block tridiagonal where the blocks remain 2 X 2. The external force 

f”’ ’ +f” in this equation is equal to the pressure difference calculated by (5) 

f”” +.Y =/+I +p”-2p,=c~(p~+‘+p~)-2p,=c~(u~+‘(l)+u~(1))-2p, 

Next, the structural integration (44) is written as 

(52) 

This equation is then fitted into the last two lines of (50). Hence the matrix Cur, of (5CJ is given by the first 

matrix of (53). Cb,, contains the matrix in front of lJi on the right-hand side of (53). F, is given by the last 
vector of (53). 

3.4.2.2. Euler equations. Next the coupling matrices for the Euler equations are specified. These coupling 
matrices are more complicated to calculate. However, the consideration remains conceptually the same as for the 
acoustic equations. The velocity of the piston is taken into account by the virtual node, (35). Like in the acoustic 
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algorithm the consistent piston velocity (47) is used in the calculation of the virtual node. When (47) is 

substituted into (35) and used in (32) for the fluid equation at node N this equation reads 

2( VW);+‘(3) - (‘VW);+;(3) 

(54) 

This equation is fitted into the last three lines of (50). The matrix Cu,, contains the left-hand side multiplication 

terms in front of ti:‘+ ’ in (54). The matrix Cb,, consists of the terms in front of ti: on the right-hand side of 

(54). 
For the integration of (32) the cell size Vn+’ at time tn ” is needed. This value is not known at time t’+‘. 

Therefore, it is calculated as a linear extrapolation from the current and previous time level according to 

Yf 
IlJ-l =2zr” _ “Ir”-l 

(55) 

The term Cu,, in the matrix represents the pressure at t”+ ‘. This pressure has to be calculated by a Taylor 

expansion as it is not an explicit variable 

where 

dp” 
-=(l-y)u 
dW(2) 

(57) 

ap” 
---zy-l 

aw(3) 

It is easily verified that the pressure also satisfies the homogeneous property. Therefore, the pressure at t”” is 

calculated as 

,I+ I ;31, ,,+ 1 
P =- w 

aw I” 
(58) 

Eq. (42) is used to integrate the structure as the Euler equations describe the fluid with three variables per node. 

In this way the matrix structure of (50) remains block tridiagonal with block size 3 X 3. Eq. (56) is then 
substituted-in Eq. (42) which gives 

4 

bt2m+k O O 
2 -- 

At lo 
A 

-~ 0 1 
At2 . 

(59) 
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This equation forms the last three lines of the total fluid-structure interaction system (50). Accordingly, the 
matrix Cur, in (50) is given by the first matrix of (59). The matrix Cb,, is empty in this case and F, is given by 

the last vector of (59). 
Finally also, the movement of the mesh is taken into account. Then, the mesh velocity also becomes an 

unknown in the fluid equations since it is a function of u:+‘. The interval of the mesh velocity Aw = wnC’ - w” 

is added to the vector of conservative variables W. The partial derivatives of the flux to the mesh velocity also 

have to be taken into account as the flux Qi’ is a function of W. The flux at I”+’ is calculated by 

F ““=F”+~AW+~A~=F~+JA~+-~-~A~ 

Making use of the homogeneous property this is written as 

F “+I =JW”+’ +;gAw 

(60) 

The factor t is added because of the Geometrical Conservation Law (GCL, [31,32]). This law states that a 

uniform flow has to be a solution of the discretised flow equations on a moving mesh. Therefore, the fluxes 

which calculate the transpiration of the conservative quantities through the moving mesh have to be calculated 

consistently with the discretisation [25]. In this case the mesh velocity w is a linear function in time between the 

different time levels, since it follows the structural motion. Accordingly, the transpiration fluxes have to be 

calculated by the trapezoidal rule. This means it has to be calculated at tn+“‘. The flux at w(t”+“‘) is then 

calculated by 

F(w(t”+“* ))=F” +;gAw (62) 

The numerical flux at xi+, ,? is given by 

@ ,+,,*= @+(w,?u’,+,,2)+ @-(Y+,‘Wi+,,2) (63) 

where w, + I ,2 = t(wl + wi+ , ). For the calculation of the numerical flux at t”+’ the partial derivatives of these 
fluxes with respect to the mesh velocities w are needed. It can be verified that these derivatives satisfy the 

following property 

1 
a@* -w ( > 2 1 a@*(W) 

Z-p 
&V 2 3W 

The numerical representation of (62) is then given by 

@YZ,‘,, = a;+, ,* + + 
a@~(Y+&+,,,) 

f3W 1 @w, + Aw, + , ) 

(64) 

(65) 

The partial derivatives of the numerical fluxes with respect to the mesh velocity w are given in Appendix B. 
The velocities of the mesh become a function of the velocities of the neighbouring mesh velocities. This adds 

a fourth equation to the discretised Euler equations (31). This equation expresses the spatial distribution of the 
mesh movement (33), at time tn+’ which reads 

,,+ 1 
x ?I+1 

W, 
-Lw 0 

x ,+I = (66) 
,+I 

This is now written as a linear function of the variable Aw to be compatible with the variable introduced in (65) 

ntl 
Aw, _ x, Aw;$ = xi ,+,,1 ,I 

xi+1 X 
,+I -W, 

1+1 

As Eq. (66) is satisfied at all times starting at t = thegin, the right-hand side of Eq. (67) is zero by induction. At 
the piston the velocity of the mesh at time tn+’ has to be equal to the piston velocity. Therefore, the expression 
for the mesh velocity as function of Aw, is 
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This is also a boundary condition of the fluid which is a function of ti y + ’ . Therefore, (68) modifies Cu,, and B,.. 

The structure of the linear system (50) is not affected by the addition of the mesh, structure and interaction. The 

matrix remains block tridiagonal with blocks of 4 X 4. 

4. Numerical results 

The numerical methods are now validated on a documented piston problem. The numerical values of the 

parameters are chosen the same as in the thesis of Piperno [7], which were designed for strong coupling effects. 

They are listed in Table 1. The first eigenfrequency of the coupled system is calculated by the transcendental 

equation (14). The solution of this equation gives a numerical value of 341.61 rad/s. The eigenfrequency is 

considerably larger compared to the structural eigenfrequency (100 rad/s). The eigenfrequency of the fluid 

closed in a tube with two fixed ends is calculated from ( 14) by taking the limit m + m. This gives an 

eigenfrequency of of = ~TTC, /L = 1030.96 rad/s. This is much larger than the coupled eigenfrequency of the 

system, which shows the strong coupling effects of these parameters. 

4.1. Acoustic wsults 

First, the problem is solved by means of the acoustic solver which is described in Section 3.1. The fluid 

domain is discretised with 100 nodes. The initial conditions for the piston are taken as U, = 0 and ti, = 20 m/s. 

The comparison of the piston frequencies for the three coupling algorithms and different CFL numbers is 

shown in Table 2. At CF’L = 1 all algorithms predict the correct frequency. As the CFL number is increased, the 

monolithical algorithm performs better than the staggered ones. The prediction 2 algorithm gives better results 

than prediction 1. This confirms the expectations argued at the end of Section 3.4.1. 

The amplitude of the piston is depicted in Fig. 4 for the three algorithms at CFL = 1. There is not much 
difference between the solutions. The prediction 2 curve is a little more damped than the prediction 1 curve. In 

turn the monolithical algorithm shows more damping than both staggered algorithms. 
The differences between the different algorithms is more pronounced when the CFL number increases. The 

amplitude of the piston calculated with prediction 1 staggered algorithm for higher CFL numbers is depicted in 

Fig. 5. The results with prediction 2 are shown in Fig. 6. The damping of the signal is caused by the numerical 

damping in the fluid solver since the structure solver has no numerical damping. One can see that the numerical 

damping is higher for the prediction 2 solution. The piston has to vibrate around the equilibrium position as 

there is no external force which acts on the structure. As the CFL number increases the deviation of the solution 

to the equilibrium position is also increasing. This deviation is larger for the prediction 1 solution caused by the 
less accurate prediction. 

Table 1. Parameters for piston problem 

L 1 

b 1.3 
c 328.17 

P., 1 x IO‘ 

@,> 100 

,,1 0.8 
Y 1.4 

m 

k 
m/s 

Pa 

rad/s 

kg 

Table 2. Comparison of piston frequencies (fad/s), acoustic 

CFL= 1 CFL = IO CFL = 30 CFL = 50 

Prediction 1 341.6 342.2 346.9 357.4 

Prediction 2 341.6 342.2 346.7 347.5 

Monolithical 341.6 341.5 340.9 339.9 
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Fig. 4. Amplitude of piston, CFL = I, acoustic. 
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Fig. 5. Amplitude of piston, acoustic-staggered algorithm, predic- 

tion 1. 
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Fig. 7. Amplitude of piston, acoustic-monolithical algorithm. 

The problem is then solved by the monolithical algorithm. The oscillation of the piston is shown in Fig. 7. 
The amplitude is more damped than the prediction 2 solution. Furthermore, the solution oscillates perfectly 

around the equilibrium position. 

4.2. Stability 

Next, the stability of the coupling schemes is investigated. The fluid-structure algorithm is written as a matrix 

vector equation, as in Eq. (50). This equation is then written as 

[A]{X”+ ‘} = [B]{X”} + {F} (69) 

where 

(70) 

(71) 

The stability of the scheme (69) is determined by the spectral radius of the matrix 
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-3 -2 -1 0 1 2 3 

Fig. 8. Eigenvalue trajectories for staggered algorithm, prediction 

I, CFL I-200, ACFL = 2. 

Fig. 9. Eigenvalue trajectories for staggered algorithm, prediction 

2, CFL I-200, ACFL = 2. 

ICI = [Z-J1 -‘[Al (72) 

Stability of the system is guaranteed when the spectral radius of the matrix [CJ is larger than one. The 

trajectories of the spectral radii for the different coupling algorithms are depicted in Figs. 8-10 in the complex 

plane. At CFL = 1 all eigenvalues are roughly situated at a circle of radius one centred at (2,0), plus one 

eigenvalue in the centre of this circle. The eigenvalues follow the solid lines as the CFL increases. The small 

circles mark the eigenvalues at CFL intervals of 2 for the staggered schemes and 20 for the monolithical 

scheme. The dashed line depicts the unit circle which is the limit of stability. One can see that the staggered 

algorithms are conditionally stable. The staggered scheme with prediction 1 becomes unstable at CFL = 80. The 

stability limit of the prediction 2 algorithm is CFL = 136. The monolithical scheme however, does not become 

unstable. For this scheme the smallest eigenvalue approaches (- 1,O) when the CFL is further increased but 

never reaches this limit. 

Next, the fluid flow in the tube is calculated by the Euler equations. The initial conditions and number of 

nodes are taken the same as for the acoustic case. Here the staggered scheme only uses prediction 2 since it 

showed superior results for the acoustic simulations. The piston frequencies are compared in Table 3 for the 

different coupling algorithms and different CFL numbers. Here again, the results are very similar for small CFL 

numbers. The frequencies are better predicted with the staggered algorithm than with the monolithical algorithm. 

Fig. 10. Eigenvalue trajectories for monolithical algorithm, CFL l-1000, AWL = 20. 
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Table 3. Comparison of piston frequencies @ad/s), Euler 

CFL= I cFL= IO cFL=30 CFL = 50 

Prediction 2 341.6 341.9 343.4 346.2 

Monolithical 341.7 343. I 350.4 368.0 

This is probably caused by linearisation errors for the pressure (58), and extrapolation of the area (55). The 

amplitude of the piston is depicted in Fig. I 1 for both algorithms at CFL = 1. The results are very similar. The 

monolithical scheme shows more damping than the staggered scheme. 

More differences occur when the CFL number is increased. The amplitude of the piston calculated with the 

staggered scheme is depicted in Fig. 12 for several CFL numbers. The results are similar to the acoustic results. 

For the staggered scheme the solution deviates more and more from the equilibrium position as the CFL number 

increases. 

The amplitude of the calculation with the monolithical algorithm is depicted in Fig. 13. This solution is again 

more damped than the staggered solution. The monolithical scheme shows no non-physical deviation from the 
equilibrium position. 
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4.4. Analysis of damping 

The numerical damping of the algorithms is analysed in some more detail now. Figs. 5-7 show that the 

numerical damping is higher when the prediction is more exact. Hence, the highest damping occurs in the 
monolithical algorithm and the prediction 2 solution is more damped than that of prediction 1. This observation 
is analysed in this section. 

The energy which is transferred from the fluid to the structure per period is calculated by the integral of the 

product of the structural velocity and force which acts upon the structure 

(73) 

In the analytical case this energy has to be zero as there is no production or dissipation in the physical system. 

Numerically, the energy decreases since there exists numerical dissipation in the fluid solver. To calculate the 

energy, pressure and velocity have to be known as a function of time. 

From a quasi-steady consideration on the piston problem it follows that the force and displacement of the 

piston have to be 180” out of phase (when the piston moves to the right the pressure has to decrease). Hence, the 

analytical force and displacement are chosen as 

,f(t) = j cos(wt) 

a,(r) = -ii, cos(wt) 
(74) 

wheref‘ is the force amplitude and i, is the amplitude of the displacement. The velocity of the piston is then 

calculated by taking the partial derivative of the displacement to the time 

u’, = wU, sin(wt) (75) 

The phase relationship of the force and velocity is confirmed by the calculation. The velocity and force are 

plotted as a function of time in Fig. 14. The force is divided by 200 to obtain a comparable amplitude in the 

figure. The calculation is performed with the monolithical scheme at CFL = 10. The 90” phase difference is 

clearly visible. 
Now, the analytical transferred energy is calculated by the substitution of (74) and (75) in (73) which gives 

T 

E= to;, sin(wt)f cos(ot) dt = 0 (76) 

This shows that in the analytical case there is no net energy transfer between fluid and structure. 
In the staggered case there exists a time lag between fluid and structure. This time lag is present in the 

prediction of the structure velocity which is used to calculate the pressure. So the pressure, which has the same 

Fig. 14. Velocity and forte/200, monolithical algorithm, CFL = 10. 
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time dependence as the force, is calculated at t”+’ - 4 At, where 0 < 4 < 1 for the staggered schemes. Then, 

the energy is calculated by 

i 

T 

E= &, sin(wt)f cos(w(t - 4 At)) dt 
0 

I 

T 

= wu,f sin(wt)(cos(wt) cos(w4 At) + sin(wt) sin(w+ At)) dt 
0 

= nii,f sin(w4 At) (77) 

This calculation shows that there is an energy source which transfers energy from the fluid to the structure when 

the pressure is calculated too early. This term is scaled by sin(w+ At) which is very small when the prediction is 

good or when the time steps are small. 

The predictions 1 and 2 in the staggered scheme produce energy which is transferred to the structure. The 

numerical damping in the fluid solver compensates this production so that the final solution is still damped. The 

total damping depends on the sum of the numerical production and damping. This contributes to explain why the 

staggered scheme becomes unstable at high CFL numbers as shown in Section 4.2. The numerical energy 
production is in that case higher than the numerical dissipation. 

It is concluded that in order to avoid energy creation and non-physical deviation a numerical time marching 

fluid-structure interaction algorithm has to satisfy the Interaction Consistency Law. This law is defined as 

Interaction Consistency Law (ICL) 

The time dependence of the boundary conditions for fluid and structure solvers has to be consistent with the 

discrete time integration of the structure and JEuid solvers, respectively. 

For the structure solver (constant average acceleration) this means that the external force f(t) has to be 
calculated with the pressure at t”+‘, as shown in Section 3.3. The boundary velocity for the fluid solver has to be 

calculated with Eq. (47), as derived in Section 3.4.1. This velocity contains the structural velocity at t”+‘. 
Accordingly, the boundary conditions of fluid and structure both contain the implicit variables of structure and 

fluid respectively. Therefore, only the monolithical scheme satisfies the ICL. When a staggered scheme is used, 

prediction 2 is recommended. For other structure integration rules than the trapezoidal rule, another consistent 
boundary velocity, like (47), has to be derived. 

The Interaction Consistency Law is not to be confused with the Geometrical Conservation Law. The GCL 

dictates the consistency of the mesh movement and fluid solver, whereas the ICL dictates the consistency of the 

boundary conditions and fluid/ structure solvers. 

The observed non-physical deviation of the piston can also be explained by the energy analysis. According to 
the first law of thermodynamics, total energy needs to be conserved. This is also the case for the piston problem. 

The energy which is created by the staggered scheme is stored in potential energy of the system. The 

non-physical deviation is negative, so energy is stored in an augmented pressure in the tube. Energy is also 
stored in the spring which is under tension at the end of the simulation. 

5. Concluding remarks 

A numerical analysis of different time marching fluid-structure interaction algorithms is presented. The 
relatively simple piston problem is chosen in order to concentrate on the coupling algorithms. The one- 

dimensional fluid is modelled by linear acoustic and nonlinear Euler equations. The acoustic equation is 
discretised by a first order upwind method. The nonlinear Euler equations are written in moving mesh 
coordinates by the Arbitrary Lagrange Euler method (ALE). These equations are discretised by the Van Leer 
scheme and integrated in time by an implicit method. The structure is integrated in time by the constant average 
acceleration method. In order to couple fluid and structure solvers first the staggered coupling method is adopted 
which integrates both mediums in time by separated solvers. The interaction is then taken into account by the 
boundary conditions. The method suffers from a time lag between the integration of fluid and structure. The 
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influence of the time lag is studied by comparing two different predictions of the structure. Then, the novel 

monolithical algorithm is presented. Here, fluid and structure are integrated in time as one system. The time lag 

is not present in this algorithm. For the Euler equations the mesh movement is also implicitly coupled to the 

structure. 

The acoustic calculations show that the staggered as well as the monolithical scheme converge to the 
analytical solution as the time step diminishes. The differences become more pronounced as the CFL number 

increases. The staggered schemes show a non-physical deviation from the mean position of the piston with 

increasing CFL. This deviation is diminished by an improvement of the structural prediction. The deviation is 

not present in the monolithical simulations. Stability analysis shows the unconditional stability of the 

monolithical scheme whereas the staggered schemes have a limited domain of stability. The domain of stability 

for the staggered scheme is enlarged when the prediction is improved. The calculations with the monolithical 

scheme show more damping than those with the staggered scheme. Analysis of the numerical damping shows 

that there is production of energy in the staggered algorithm since the prediction of the structure is not correct. 

The production of energy is diminished by the improved prediction. The results with nonlinear Euler equations 

show similar results. These simulations show the concept and feasibility of a monolithical time marching 

fluid-structure interaction scheme with nonlinear fluid equations on moving meshes. For a practical problem 

there are multiple dimensions involved. In n dimensions the fluid solver is modified by the addition of n mesh 

velocities to the number of variables and equations per node. For the Euler or Navier-Stokes equations in two 

dimensions this means that there are 6 variables per node and in three dimensions there are 8 variables per node. 

The discretisation of a multiple dimensional structure by many degrees of freedom can be reduced to several one 

degree of freedom problems by modal decomposition. These problems can be solved by the same technique as 

discussed in this paper. The present analysis leads to the definition of the Interaction Consistency Law (ICL). 

This law states that the time dependence of the boundary conditions for fluid and structure solvers has to be 

consistent with the time integration of the structure and fluid solvers, respectively. When this law is satisfied by 

the algorithm non-physical deviation and numerical energy production are avoided. 
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Appendix A. Jacobian matrices of the Van Leer fluxes 

To calculate the derivatives of (27) this equation is first written as 

(A.11 

where 

(A.21 
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j-,=x 
y2- 1 

L!,=$ 

f,+,- w(U32c) 
Y 

Now, the flux Jacobians are written as 

a@; af”; f,’ + af,’ -=- 
ah, aWz3 aw,?,fF 
a@; a@: aft -=-fff + aw,,, 
ah, ah, 

-@; 

a@; _ a@? + aft 
aw,,, awl,, f, + aw,,, 

-CP; 

where f i = f ,‘, +faz +fd3 +ft4. Next, the partial derivatives are calculated. For ff they read 

_ _ Y(Y - U(u2 - a aff _ + 

aw, ( 1 

- 4c 

g= k(fiY;xy 8c3 

1 

For f,’ 

3-t u 3/(y- l)@-Q 
57=2(lJ-+c) -p’ 

I ( 2PC 1 

aft 1 
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( p’ 
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2PC > 

afZ 
W=2(U+ 7(&l)) 
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j_ _THY-l)u 1 af' 1 

aw2 YPU YPC +P 

af ,’ 4-l -=+- 
aw, - PC 

C4.3) 

64.4) 

(A.61 
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For f ,‘, 

__+ 'y(Y-- 1w aft, 
aw, - PC(l + Y) 

vi2 2y(u* - E) 
-= 
aw, PC1 + r> 

-=_ 2yu af,* 

a% P(1 + Y) 

ah2 2~ -= 
aw, PC1 + Y) 

For .L 

vi, u2 -=-- 

awl P 

vi3 u --.- 
aw, P 

And for f t4 

df:‘L! _-_T 
aw, ( 
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Appendix B. Partial derivatives to the mesh velocity 

The derivatives of the Van Leer fluxes to the mesh velocity w read 

The functions f are defined in Eq. (A.2). The partial derivatives are for f f 

(A.7 

64.8) 

CA.9) 

(A. 10) 

03.1) 

af,' - = -2(u+c) 
aw 03.2) 
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For f _t 

df,' 1 -=- 
&v Y 

And for f 7 

u + wT2c df: -2 utc 
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