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Introduction 

 

 In order to bring the Apollo space capsule safely back to Earth, an 

optimal control system has been designed to ensure that the final states of 

velocity, flight-path angle, altitude, and range to go are within a specified 

criteria. The single control is the capsule bank angle, effectively 

modulating the capsule lift and drag. 

 An open loop Simulink simulation was run with nominal initial 

conditions to obtain a reference trajectory which defines the ideal reentry 

situation.  

 The optimal control system has been designed to control the capsule for 

extreme overshoot and undershoot reentry conditions. 



Reentry Specifics 

 The capsule is assumed to be entering Earth’s atmosphere after an initial 

skip out and Kepler lob, resulting in the following nominal entry conditions 

for velocity, flight-path angle, altitude, and range angle to go, respectively. 

                         V = 7162.8 m/s          γ  = -2.0  deg            h  = 80000 m         Ѳ = 10.556  deg 

 With the nominal initial states and ideal atmospheric conditions, a constant 

bank angle σ = 53˚ would deliver the capsule to the desired final states. 

 However, the optimal control system has been designed to deliver the 

capsule to the desired final states while having the following worst case 

undershoot and overshoot initial states. Entry velocity is assumed nominal, 

as the velocity value of 7162.8 m/s activates the control system. 

            Undershoot reentry initial states:  γ = -2.2 deg, h = 72,000 m, and Ѳ = 11.556 deg 

            Overshoot reentry initial states: γ = -1.8 deg, h = 88,000 m, and Ѳ = 9.556 deg 

 

 

 

 



Governing Equations 

 The governing flight dynamics for the Apollo capsule during reentry are 

given by the following equations: 
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Variable Description 

L Lift force 

D Drag force 

rho Density of air 

m Vehicle mass 

g Gravitational acceleration 

g_SL g at sea level 

h_0 Reference altitude 

H Scale height 

S Capsule surface area 

C_l Coefficient of lift 

C_d Coefficient of drag 

Re Earth radius 



          Capsule and Reentry Details 

 
 

 Capsule area is S = 12.0687 m2 

 Lift coefficient CL = 0.38773  

 Drag coefficient CD = 1.292433 

 Capsule mass m = 5500 kg 

 

 

 Reference density at reference altitude ρ0  = 2.7649(10-4)  kg/m3  

 Reference altitude h0 = 60,000 m  

 Scale height H = 7,000 m 

 Gravity at sea level       = 9.80665 m/s2 

 
SLg



           Simulink Model (Open Loop) 

 The open loop Simulink model used to obtain the reference trajectory is 

shown below, and plots of each reference state follow: 



Reference States vs. Time 



Simulation 

 

 When the capsule velocity reaches the nominal velocity from the open loop 

simulation, the optimal control system is initiated. 

 Control stops when velocity reaches 500 m/s. 

 The closed-loop control system uses the optimal linear quadratic regulator method. 

MATLAB and Simulink were used for analysis.  

 The actual terminal states were specified to have the following errors from the 

terminal reference states : 

 Final flight-path angle error ≤ 0.5 deg 

 Final altitude error ≤ 100 m 

 Final range-to-go ≤ 6 km 

 



       Linear Quadratic Regulator 

Methods 

 LQR methods are well known and widely used in optimal control 

problems. 

 LQR applies to linear systems with a quadratic performance index. 

 Capable of balancing desired system response and control effort. 

 A “State regulator” LQR has been implemented for the Apollo control 

system. The LQR obtains a control u(t) which attempts to keeps the system 

states near zero. 

 The system must first be linearized to apply LQR methods. For a state 

space representation (SSR) to be used, this requires recalculation of the 

linear system matrices at regular intervals. The SSR is written in terms of 

state and input deviations. 



 For a non-linear system that has been linearized in this way, it is the state 

and input deviations that are driven to zero by the LQR. In this way, the 

actual states are driven to the reference states. 

 

                       It should be noted that for multiple input multiple output (MIMO) systems x and u are vectors.  

 Control is obtained by multiplying a gain matrix by the system states as 

shown below. However, LQR utilizes a unique gain matrix K that allows 

the designer to weight the importance of state, control, and final state 

deviations through the use of the Riccati matrix M. 

      Control: 

      Gain matrix: 

      Riccati matrix: 

 R and Q  are the control and state weighting matrices respectively. 

 The final states are weighted based on the terminal BC, M(T) = M_final, 

where M_final is the user defined weighting matrix.  

  

      

       Linear Quadratic Regulator 

Methods 



             Simulink Model (Closed Loop) 

The closed loop Simulink model used to implement LQR methods for optimal 

control of the Apollo reentry trajectory is shown below.  



            Summary of Simulation Process 

The LQR method has been implemented using Simulink and Matlab as follows 

 First the reference trajectory was obtained from the open loop simulation and all 

states stored as a .mat file. The .mat file was then used to create polynomial fits to 

give all reference states as functions of time. 

 An m-file was provided which integrated the Riccati equation offline and computed 

the gain matrix for user specified state, control, and final state weighting values. 

 The state gains were stored in a similar manner and polynomials of state gains vs. 

time were created. 

 Using the open loop Simulink simulation as the basis, the state outputs from the 

non-linear eq. of motion and simulation time were input to a “closed loop” m-file 

which computed state deviations from reference, computed state gains, and 

calculated and output the control deviation (change in bank angle). 

 The bank angle deviation was added to the reference bank angle of 53 deg. 

 The new bank angle was input to the non-linear eq. of motion, closing the system 

loop. 

 This process was repeated over time until simulation velocity reached 500 m/s. 



Simulation Results 

 With the use of the “State regulator” LQR method, it is possible to control 

the Apollo capsule during reentry for both worst case scenarios. However, 

many different Q, R, and M matrix values were tried but the optimal values 

were not completely found. No set of values was tested by the user to yield 

all three terminal state errors  as specified, though the set of values does 

exist. Presented here are the closest of many trials. A monte carlo 

simulation would be capable of finding optimal Q, R, and M values. 

The magnitude of final errors were found to be: 

 For undershoot initial conditions      

 Final flight-path angle error ≤ 1.15 deg 

 Final altitude error ≤ 31.6 m 

 Final range-to-go ≤ 58.9 km 

 For overshoot initial conditions 

 Final flight-path angle error ≤ 0.344 deg 

 Final altitude error ≤  88.7 m 

 Final range-to-go ≤  167 km 

 



             Results (Undershoot) 



Bank Angle  



Velocity vs. States 



States Gains vs. Time 



Velocity vs. State Gains 



            Results (Overshoot Scenario) 



Bank Angle  



Velocity vs. States 



State Gains vs. Time 



Velocity vs. State Gains 



Conclusions 

 The analysis done has proven that the LQR method is an effective way of 

obtaining a desired system response, while ensuring that control effort is 

not out of physical limits. 

 Predicting/guessing the Q, R, and M matrix values proved to be very 

difficult. Many trials were attempted with a large variation in final state 

error results between the three states of interest. 

 The computational complexity of the simulation lead to long simulation 

running times (~2-6 min.), making multiple trials difficult.  

 However, even without obtaining all final states within specified error, it is 

actually quite easy to ensure one, or two of the three state errors are 

satisfied, demonstrating the control one can impose on a physical system 

using LQR and the effectiveness of the simulation created. 
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