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In non-deterministic Wavefunction-collapse theories like the Copenhagen Interpretation, probabilities
are built-in by axiom, and set the frequency of the Wavefunction collapsing around some position. In
hidden-variable theories like Pilot Wave Theory, probabilities emerge from our lack of knowledge of the
hidden variables, and set the frequency of particles being located around some position. The Many Worlds
Interpretation (MWI), on the other hand, is both deterministic and absent of any hidden information, so
how can we use it to ascribe probabilities to measurement outcomes? How do probabilities enter the theory
at all? A question like

“What is the probability that I will find this particle located near position x?”

is not actually well-defined in MWI, because that result is guaranteed to happen in some branch(es) of the
Wavefunction, as are all other possible results — there are versions of myself that find that result and versions
that do not. So how do we reconcile this picture with the fact that some measurement outcomes appear to
occur more often than others, with probabilities given by the Born Rule? Well, to start, we should construct
a ‘probability question’ that actually is well-defined in MWI. Rather than asking about the probability of
obtaining a particular measurement outcome (which is indefinite), the natural choice is to ask about the
probability of being in a particular branch of the Wavefunction.

Let us examine a simple case by considering the following Wavefunction for the measurement of a “quan-
tum coin” at a time shortly after the measurement takes place. In this scenario, the coin has just become
entangled with the apparatus used to ‘measure’ its state, and interactions between the apparatus and its
environment have just led to some parts of the environment becoming entangled, as well:
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The first factor in each term (with the boxed H or T) represents the state of the coin (heads or tails) and
the measurement apparatus. The second factor (the £ states) represents the entangled environment — stray
electrons, photons, atoms, etc. in the room that have interacted with the apparatus, and whose states are
entangled with the coin’s. These first two factors will make this Wavefunction decoherent, so we can already
think of it as two independent worlds. However, the cascade of entangling interactions has not yet reached
the point that the observers in these two worlds are aware of the measurement outcome. They are included
in the third factor, which represents the parts of the Wavefunction whose states are not yet entangled with
the coin’s, because the cascade of interactions has not yet reached them. These observers can then sensibly
ask the question

“What is the probability that I am in the world in which the apparatus measures the coin to be
in the ‘heads’ state (or ‘tails’ state)?”

Thus, probabilities in MWT arise from the uncertainty that observers in branched Wavefunctions will initially
have about which world they are actually in; they are the credences that the observers have of being in a
particular world. Probabilities in MWTI are, therefore, necessarily Bayesian, rather than frequentist.

But how do we actually determine what these Bayesian probabilities should be? Ultimately, we will
need to show that they are consistent with the Born Rule, but it is worth noting that this is largely a
conceptual problem, not a technical one. The square-amplitudes of the Wavefunction are a natural choice for
probabilities in quantum mechanics, because they are always positive numbers that add up to 1. Therefore,
essentially any attempt to uncover a reasonable calculation of probabilities based on the structure of quantum
theory will lead to the Born Rule. That being said, a conceptual problem is still a problem, nonetheless.
The challenge is to derive a definitive line of reasoning that would lead observers to assign credences based
on the structure of quantum theory, so as to recover the Born Rule.

Unfortunately, there is a rather natural line of reasoning, often referred to as “branch counting”, that is
actually inconsistent with the Born Rule. The rationale for branch counting can be stated in a few different
but related ways. For instance, considering the 2-branch Wavefunction in Eq. 1, the observers might reason
along the lines of:



“I know that there are two observers in two different branches, and I know that I am one of them,
so the probability that I am either one in particular should be 1 out of 2, or 50%.”

So the branch counting rule is that, for a Wavefunction containing N independent branches, the probability
of being in a particular branch is simply 1/N. Of course, we know this is wrong a posteriori, because it is
inconsistent with the Born Rule, and therefore with experiments. Nonetheless, the rationale that leads to
branch counting is quite intuitive, so it behooves us to discuss what exactly is wrong with this intuition,
and how exactly it should be corrected. The tacit assumption built-in to the rationale of branch counting
is sometimes referred to as the “Principle of Indifference”, which is, in essence, the statement that we are
indifferent towards the various possibilities, and therefore assign equal probability to each. To make this
explicit, let us restate the rationale as:

“I know that there are two observers in two different branches, I know that I am one of them,
and I am indifferent towards which one, because I have no reason to belicve that either one is
more likely than the other. So, given that I believe both possibilities are equally likely, and that
their combined probability should total to 1, the probability of each should be 0.5.”

Put this way, it should be clear that this an assumption worthy of some skepticism. Do we really have no
reason to believe that one is more likely than the other? Let us try to determine the conditions under which
this assumption of indifference can be justified by starting with a classical analogy.

Classical Indifference

Figure 1

A dealer places two stacks of three cards face down on a table in front of you — one on the left and one on
the right — and tells you that one of the cards is a joker. What is the probability (i.e. what is your credence)
that the joker is in the stack on the left? You may have an intuition that the Principle of Indifference can be
applied here, so that it is equally likely for the joker to be in either stack. But why? Suppose you swapped
the positions of the two stacks, so that the stack that was on the left is now on the right, and vice versa,
and reconsider the question: What is the probability that the joker is in the stack on the left? From your
point-of-view, nothing has changed; as far as you can tell, the setup looks the same as it did before you
swapped the stacks; there are still two stacks of three cards face down on the table, one on the left and one
on the right (see Fig. 1). In that case, you must insist that your credence about whether the joker is in the
stack on the left or the right is unchanged by this swap, so the probability of the joker being in the stack on
the left before the swap is the same as the probability of it being in the stack on the left after the swap:

P(L,before) = P(L, after) (2)

Furthermore, you must insist that the probability of the joker being in the stack on the left after the swap
is the same as the probability of it being in the stack on the right before the swap, simply because the stack
on the left after the swap is the stack on the right before the swap:

P(L,after) = P(R, before) (3)



Combining these two equations, you find
P(L,before) = P(R, before) 4)

which is the Principle of Indifference! Thus, we have justified the assumption for this scenario. Combining
this with

P(L,before) + P(R, before) =1 (5)

you obtain the probabilities
P(L,before) = 1/2 (6)
P(R,before) = 1/2 (7)

We might call this result “stack counting”: given a set of N stacks, the probability of the joker being in a
particular stack is simply 1/N.
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Figure 2

Now suppose the dealer takes one of the cards from the stack on the left and moves it to the stack on
the right, so that the left stack has 2 cards and the right stack has 4. Reconsidering the question — What
is the probability that the joker is in the stack on the left? — you may have an intuition that the Principle
of Indifference cannot be applied here. But why? If you swap the stacks as you did before, you will find
that, in this case, the setup does not look the same as it did before the swap. The stack on the left after the
swap is now apparently different from the stack on the left before the swap — the former contains 4 cards
while the latter contained 2 (see Fig. 2, top). Therefore, Eq. 2 does not follow, and you cannot justify the
Principle of Indifference in this case. So what can you do instead? Well, imagine splitting the stack of 4
cards on the right into two stacks of 2. Let us call these imaginary stacks “pseudo-stacks”. Now you have
three (pseudo-)stacks of 2, one on the left and two on the right, and you can swap any two of them without



changing the setup at all (see Fig. 2, bottom). Therefore, following the same reasoning as before, you must
insist that the Principle of Indifference applies between these (pseudo-)stacks, i.e.

P(L,before) = P(Ry, before) = P(Rz, before) (8)
where R; and Rs refer to the two pseudo-stacks on the right. From this, it directly follows that

P(L,before) =1/3 9)
P(Ry,before) + P(Rz, before) = P(R, before) =2/3 (10)

In this case, despite the fact that the Principle of Indifference was invalid at the outset, we were still able to
leverage it in order to obtain the correct probabilities through a clever use of “pseudo-stacks”.

Quantum Indifference

The situation in quantum mechanics and MWI is slightly more complicated, but we can refer to many
of the ideas outlined in the above ‘classical’ analogy to guide us through it. Let us start again with Eq. 1,
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Recall the question at hand: What is the probability that you (an observer) are in the world (i.e. branch
of the Wavefunction) in which the apparatus measures the coin to be in the ‘heads’ state? To see if the
Principle of Indifference can apply here, let us follow the classical analogy and ‘swap’ the environment states
between the two branches:
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Now reconsider the question at hand: What is the probability that you are in the world in which the
apparatus measures the coin to be in the ‘heads’ state? From your point-of-view, nothing has changed,
because the apparatus states are exactly the same as they were before the swap; only the environment states
changed, and they aren’t relevant to the question at hand; we only care about the apparatus states at the
moment. Therefore, you must insist that your credences are unchanged by the swap, so you can reasonably
assert that the probability of being in the branch of |¥;) in which the apparatus measures ‘heads’ is the

same as that for |Us):
P (1] w,) = P (1] v,) (13)

Now, let us note that the probability of being in the branch of |¥5) in which the apparatus is in the state
‘> is the same as the probability of being in the branch of |¥s) in which the environment is in the state

1)
P (, ‘112) = P (Er, V) (14)

This is because, for |¥s), the branch in which the apparatus is in the state ’> is the branch in which the

environment is in the state |E1).
Next, we can swap the apparatus states of the two |¥y) branches, to obtain a third Wavefunction:
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Following the same reasoning as before, you must insist that the probability of being in the branch in
which the environment is in the state |E1) is unchanged by this swap, because the environment states were
unaffected (only the apparatus states changed):

P(&r,¥3) = P(Er, Us) (16)



And, again, since the |¥3) branch in which the environment state is |E1) is the same as the |¥3) branch in
which the apparatus state is ’>, we have

P(Er,U3) = P ( \1/3) (17)

Putting this all together,

P ( \1/1) -y ( \112) = P(Ep,Uy) = P(Er, U3) = P ( \113) (18)

Finally, notice that when the branch amplitudes are equal (a = 3), |¥3) is exactly equal to |¥;), so we can
replace W3 with ¥y in the last part of the equation above, which gives us

P([HLw) =P ([Tl w)) when a=3 (19)

This is the Principle of Indifference! Combining this with

P([E}w)+P([T]w) =1 (20)

we obtain the branch counting result
P (\I!1> —1/2 when a=§8 (21)
P (xpl) =1/2 when a=4 (22)

Thus, we have demonstrated that the Principle of Indifference and branch counting are valid and justified
when branches have equal amplitudes, which is exactly the condition under which branch counting is consis-
tent with the Born Rule. So far, so good.

When the amplitudes are unequal, however, the justification for the Principle of Indifference and branch
counting breaks down (because |¥3) will no longer be equal to |¥1)), so we have more work to do to
derive the rest of the Born Rule. Following the classical analogy, we can still try to leverage indifference
by imagining separating the Wavefunction into some number of “pseudo-branches” with equal amplitudes,
and then applying the Principle of Indifference to those. To see how this goes, let us assume that the
square-amplitudes of the two branches, |a|? and |3|?, are rational numbers; probabilities for Wavefunctions
with irrational square-amplitudes can be interpolated from the former, if needed. Then, we can write the

Wavefunction as

) = \/f\>®|6H>®|v>+\/f\>®|6T>®|v> (23)
where |al, |b], and |c¢| = |a| 4 |b| are positive integers. Now we can separate the two branches into equal-
amplitude pseudo-branches. To make the amplitudes equal, we can multiply the ’>—branch amplitudes by
1/4/a, and the ‘>—branch amplitudes by 1/v/b. In that case, each pseudo-branch will have an amplitude of
1/4/c. By the Pythagorean Theorem, this requires that we split the ’> branch into |a| pseudo-branches,
and the ’> branch into |b| pseudo-branches, so that the vector addition of the pseudo-branches returns the

original branch that they came from (with its original length). In the classical analogy, this is like imposing
that the combined total number of cards in the pseudo-stacks be equal to the number of cards in the original
stack. For example, we can perform the splitting on the environment states as follows:

66 = =) + 62} + - + 16 ja) (24)

&) = ib(|5T,1> +1&1,2) + oo+ [E1 1)) (25)



Here, |Ex) is split into a superposition of a number of “pseudo-environments”, each with an amplitude of
1/y/a. By the Pythagorean Theorem, there must be exactly |a| such pseudo-environments in the superpo-
sition. Similarly, |E1) is split into |b| pseudo-environments, each with an amplitude of 1/v/b. Substituting
these into the Wavefunction, we obtain

:\/Z‘>®(|5H,1>+ |8H’2>+"'+|5H,|a|>)®|73>
+ \/E ’> ® (|€ra) +|Er2) + oo + &1 pp) ® 1E) (26)

So, we now have |c| pseudo-branches of equal amplitude, and by following the previous reasoning, the
Principle of Indifference and branch counting can be applied to them: the probability of being in a particular
pseudo-branch should be 1/|c|. Therefore, since the apparatus measures the coin’s state to be ‘heads’ in |a]
out of |c| of these pseudo-branches, the probability of being in such a pseudo-branch is

P ([u]v) = CCL|| (27)

Similarly,

As expected, this is the Born Rule!
For the sake of clarity, consider the following example, with a =1, b =2, and ¢ = 3.

Wy = \/§\>®5H>® . +\/§‘>®|5T>®

To make the amplitudes equal, we will need to multiply the amplitude of the second term by 1/ V2, which
means that we will need to split it into 2 pseudo-branches. We can do this by identifying 2 pseudo-
environments as:

®) (29)

&) = (I€r1) + |E1,2)) (30)
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Plugging this into |¥1), we obtain

|xp1>=\/g’>®|5H>® - ﬂ/?’>®£T,1>®|f:>+\/§\>®|5T,2>®|v> (31)

Now we can swap any two of the environment states to carry out the justification for the Principle of
Indifference. For example, swapping |Ex) and |E1.1), we obtain

W) = \/§j> ® |Er1) ® @) + \/g\> ® €x) ® |@) + \/g\> ®lEra) @@ (32)

Next, we can swap the apparatus states to obtain

|Ws) = \[j. [T]) @ lera) @ :>+\/g\>®|5H>®|v>+\/§\>®|5T,2>®|zv>

= |¥y) (33)

So, following the same reasoning as before, the credences satisfy

P (, \1/1) ( \1’2> = P(&1,1,V2) = P(E1,1,¥3) = P(Er,1, V1) (34)

Of course, we could go through the same procedure while having swapped |Ey) and |E72) initially, instead,
in which case we would find

P (, \111) ( \112) = P(Er2,V2) = P(E12,¥3) = P(Er,2, V1) (35)



Combining these results, we have

P (7\I'1> =P(Er,¥1) = P(Er2, V1) (36)

which is the Principle of Indifference. Then, since probabilities must sum to 1,

P (\Ill> + P(Ep1, Uy) + P(Ep, Uy) = 1 (37)

we obtain
P (qfl) =1/3 (38)
P(E11, 1) + P(Epa,U1) = P ( \1/1) =2/3 (39)

which is consistent with the Born Rule. To emphasize the point, notice that the key to this result is really
in the first step, where we separate the ‘> branch into 2 equal amplitude pseudo-branches. Again, the

requirement that there be exactly 2 pseudo-branches in this case, in order to make the amplitudes equal, is
a direct consequence of the Pythagorean Theorem, and, thus, the Born Rule is, as well.

I would like to emphasize that this work is largely derivative of the work of Zurek (2005) and Sebens
& Carroll (2018). Many clarifying details are presented in these two papers, and I encourage the reader to
consult them as needed. The full references are given below.
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