Calculus Proof: Chain Rule

Given that f(x) and g(x) are differentiable, and h(x) = f(g(x)),

h'(x)=f'(9(x)g ()

Proof:

Let g1 be some x value and consider the following (thinking of g;as an output of g(x)):
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Set h = g, — g, (difference between two outputs of g(x)):
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Now, one may be tempted to set g, = g(x + h) and g; = g(x) as well as making the limit with h
approaching zero. However, this cannot be done as we do not if
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To overcome the possibility of having a zero in the denominator, let E(g(x + h)) be the “error term”
that represents the difference in the slope of f (g(x)) and the secant line going through f(g(x + h))
and f(g(x)). This piecewise function deals with the possibility of the denominator becoming zero.
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We see now that the difference between f (g(x)) at g(x + k) and f(g(x + h)) is the following:
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We also see that:
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Hence,
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Taking into account f(g(x + h)) - f(g(x)) = (E(g(x + h)) + f’(g(x)) (g(x + h) — g(x)) we
divide both sides by h.
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We take the limit as h approaches zero on both sides.
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