2 Symmetries and group theory

“You boil it in sawdust: You salt it in glue
You condense it with locusts and tape
Still keeping one principle object in view -

To preserve its symmetrical shape.”

Fit the fifth, The Hunting of the Snark, L.. Carroll

2.1 Groups

For a more complete discussion of group theory, especially towards its role in relativity,

the reader is recommended F. Giirsey. Introduction to group theory, Relativity, Groups
and Topology: Les Houches lectures, ed.: C. DeWitt & B. DeWitt.

We collect together some concepts to do with symmetries and their mathematical

cousins groups.

Definition. A set of objects G = {g; }ie, equipped with a product operation - : GX G +— G
is called a (abstract) group if the following azioms are satisfied:

i) closure, the product of any two elements in G is again an element of G,

i) associativity, if a,b,c € G thena-(b-c) = (a-b)-c;

ii1) identity, there exists an element e € G such thate-g=g-e=e¢ for all g € G;

) inverse, to every g € G there exists a g7 € G such that g-g ' =e=g7'.g.

The group is said to be Abelian if (g, h] = 0 for all g,h € G; otherwise, the group is said
to be non-Abelian. A subgroup H of G is a subset of G that is also a group.

Consider the following simply example:

Example 2.1 (Characteristic table). Consider the set {e,a,b} equipped with the follow-

ing multiplication law:




It is evident that this describes a finite Abelian group; moreover, note that as a®> = b and

a® = e, the set {a} describes the whole group.

Definition. Let G be a group. A group element is called independent if it cannot be
expressed as a product of other group elements. If a set X C G exists so that we may
express any element g € G as a product of elements in X we call X the the generators

of the group G.

Example 2.2 ((Z,,+,)). Let n € N then the set Z, = {0,1,...,n—2,n— 1} equipped

with modulo n addition +,, is a group.

Definition. Let G and G' be two groups whose product operations are denoted - and
respectively; a mapping h : G — G’ is said to be a (group) homomorphism if h(a - b) =
h(a) * h(b) for all a,b € G. A (group) isomorphism ¢ is a bijective map ¢ : G — G' such
that v and 1= are homomorphisms. Two groups are said to be isomorphic if there exists

an tsomorphism between them.

Example 2.3. The group featuring in example 2.1 is isomorphic to Zs where the iso-

morphism is e — 0, a — 1 and b — 2.

Example 2.4 (The circle U(1)). The set of all elements of the form € where § € R

equipped with the operator e?e?" = '@+%) where the addition is mod 21 form a group

known as U(1), the one dimensional unitary group. Moreover, the group is Abelian.

The reader interested in how this coordinate method works for the surface of the
sphere S? is directed to the description of stereographic coordinates in §5.1.1 of Nakahara

M., Geometry, topology and physics, Institute of Physics publishing.

Our two examples are very different in nature. In particular, U(1) is easily geometri-
cally identified with the unit circle; however, there exists no such obvious interpretation
of our first group. Moreover, the second group is continuous, whereas the first is the dis-
crete. In fact the unit circle is an example of a manifold which we present the definition
of:

Definition. A n—dimensional differentiable manifold M is a topological space equipped
with a family of pairs {U;, pi}ic, where |J, Uy = M and ; : U; — O, are smooth and
invertible maps from U; into an open set O; C R™. The pair (U;, ;) is called a chart

while the whole family of such pairs is called an atlas.



Figure 1: A manifold

Example 2.5 (R"). Fuclidean space R" is a manifold. The coordinate maps @; may be
taken to be 1.

Example 2.6 (The unit circle). Consider the unit circle S*; for concreteness we take the
circle 2 +y? = 1 in the x — y plane. Define o;': (0,27) — S* and ;' : (=7, m) — S*
by

@it (0) = (cosf,sinf)" and ;' (0) = (cosh,sind)".

Note that Tmp;* = S\ {(1,0)} and Imp, ' = S*\ {(~1,0)}.

The phrase ‘topological space’ need not concern us as it can be understood to mean
‘space within which we have a notion of open set’. The reader uneasy with this definition
need not worry as such fine geometric points do not pay a part in this course and are

only mentioned for completeness as they enable us to make the following

Definition. A Lie group G is a differentiable manifold which is endowed with a group

structure.

Again, we emphasise that all the Lie groups we shall be considering will have a matrix
interpretation. Lie groups are of great importance in contemporary theoretical physics

as they provide insight into the families of elementary particles.



Example 2.7 (Translations). The set R equipped with addition is an Abelian group,
called the (one dimension) translation group, and it acts on position kets |x) € R by
x) — |g+ x). More interesting is when the translation group acts on functions f by
f(x) — f(g+z). It is a consequence of Taylor’s theorem that exp(igh 'p,)f(x) =
f(g + x) where p, is the momentum operator —ihd,. In this sense we say that linear

momentum is the (infinitesimal) generator of spatial translation.

It may happen that a Lie groups may be realised as the union of disjoint subsets;
e.g. G = G, UG, such that G; NGy = 0; e.g., a matrix Lie group may be partitioned by

the sign of the determinant.

Definition. A topological space is said to be disconnected if it is the union of two disjoint
non-empty open sets; otherwise it is said to be connected. The identity connected
component Gy of a Lie group G is a connected component containing the group identity

element e.

2.2 Representations and the general linear group

We now return to a discussion of our two examples. Our second example, being more
abstract, naturally leads to the question how do we represent such elements? A conve-
nient way is to consider a mapping of G onto a vector space V in such a way that one

preserves the group product structure.

Definition. A representation of a group G is the pair {¢,V'} where V is a vector space

which is also a group and v : G — V is a homomorphism.

As the mapping ¢ preserves the group structure it is commonplace to treat G and
its representations as more or less the same thing; however, one should be wary that
while the group theory usually will be telling us something deep about a physical system
the choice of representation is entirely imposed by us and we must be careful that such

choices to do affect the physics.

In finite n—dimensional problems it is typical to take V to be the set of all n x n

invertible matrices.

Example 2.8 (The general and special linear groups). Let F be a field (typically R

or C) then set of all n x n invertible matrices over F is denoted GL,(F) which, when



equipped with matriz multiplication, is easily shown to be a group known as the general
linear group. The subgroup of GL,(F) defined by {M € GL,(F) | det M = +1} is

known as the special linear group SL, (F).

That GL,,(F) is a group is easily verified: clearly, 1 € GL,(F), matrix multiplication
is associative and any element of GL, (F) has a unique inverse; if M, N € GL,(F) their
product M N is also invertible, with inverse N='M~! so the set is closed under matrix
multiplication. Moreover, since det AB = det Adet B we conclude that SL,(F) is a

group also.

Example 2.9. The circle group U(1) is defined by the relation that z(0)z(¢) = z(0 + ¢)
where z(0) = € ; a SLy(R) representation M of this group may be achieved by mapping

6 sind
M :U(1) v SLo(R)  defined by M(@) = [ 7 "7 )
—sinf cos6

These matrices satisfy M(0)M(¢) = M (0 4+ ¢) where the group action is matriz multi-

plication.

In physics it is not the groups G themselves which are of interest but rather how
they act on other objects. For example, GL,(R) acts on R” by matrix multiplication.

In general

Definition. Let M be a set and G a Lie group. The (left) group action L, of G on M
is a map Ly : G x M — M defined by Lyp = g - p where p € M which satisfies: 1)
L,Ly = Lyp; 11) L. is the identity mapping where e is the group unit.

Example 2.10 (The circle group U(1)). The left action of U(1) on R? may be realised

by our matriz representation; x — x' = M(0)x.

Proposition 2.11. For every fized g € G he left group action Ly is a bijection.

Proof. For fixed g that L, : M +— M is onto is easily seen, it remains to assert that
every element in the image corresponds to a unique element in the range; again this is

straightforward, one simply applies L,-1 to recover the element. O



2.3 The orthogonal group

Groups are intimately related with symmetry properties. For example, we know that
if we rotate a piece of paper that any straight line drawn on it has the same length
irrespective of the orientation. To be more concrete let us consider R?, coordinatised
by (z1,72), and recall the Pythagorian invariant z? + z3. We wish to consider the
transformations (z1,xy) — (x}, ) such that 2% + 22 = 22 + 2/; this relation may be

2" where summation of repeated indices is implied. Using

ol
X = then x+— x' = Ox
72

which may be equally expressed in coordinate language as 2’ — 2/ = O%27; note that

equally written z'z! = z

matrix notation let

the position of the indices doesn’t matter here as the metric is Euclidean (i.e. positive

definite). In order to preserve the Pythagorian invariance we require that
Pl =2 = QU Ok = OIO* = §iF
which may be written symbolically as
0'0 =1, (1)

i.e., the inverse of O is simply given by its transpose; such matrices are called orthogonal

and the totality of such 2 x 2 matrices we label O(2).

Lemma 2.12. Under matriz multiplication O(2) is a group, known as the orthogonal

group of 2 X 2 matrices.

Proof. We proceed systematically, first by observing that the matrix product of any
two 2 x 2 matrices is again a 2 x 2 matrix. Then, let ©,0 € O(2) then OO satisfies
(1). Indeed, (0O)OO = O'O'OO from which satisfaction of the closure axiom follows.
Associativity follows from the basic properties of matrix multiplication and it is trivial
to see that 1 € O(2). Finally, it remains to show that axiom (iv) is met. Relation
(1) implies that, for each O € O(2), det O = +£1; hence, every element of O(2) has an
inverse O~! which we must show satisfies (1). The proof is completed by noting that
(O HYo ! = (OOt)fl. Hence, O(2) is a group. O



We have already remarked that det O = +1, VO € O(2), if we pick the component
such that det O = +1 it is straightforward to show that this subset is also a group; this
subgroup is known as the special orthogonal group SO(2) = {O € O(2) | det O = +1}.

As a result of this observation we have the simple
Corollary 2.13. The orthogonal group O(2) may be expressed as the disjoint union of
SO(2) and {O € O(2) | det O = —1}, i.e.,
0(2)=502)U{0€0(2)|detO = —1}.
Hence, SO(2) is the identity connected component of O(2).

A typical matrix SO(2) will have the form

O cos@ siné
—sinf cos®

where 6 is the parameter of the rotation about the origin; clearly, the inverse of each
such O(6) by reversing the rotation; i.e. O(f)~! = O(—6). This matrix clearly generates

the entire group.

Lemma 2.14. Any orthogonal matriz O(0) € SO(2) can be written as the exponential

of a single antisymmetric matriz ;
. 0 —2
O) =" where T=0,= ( - ) :
1

We first note that the lemma makes sense on simple dimensional grounds since e?7 =
> o %(ZQT)TL
Proof of lemma 2.14. We begin by noting that 72 = 1 and expanding the exponential
1
e’ = (Z—FZ)E(MT)”:cosﬂﬂ—i-z'TsinG (2)
odd even

which we see is the general form O(6). O

By varying 6 we can continuously map any O € SO(2) into any other = SO(2);

hence, the symmetry is said to be continuous.



To recover the other, det O = —1, piece of O(2) we make the following deduction
that any element of {O € O(2) | det O = —1} can be written as the product of an SO(2)

P=(3_01)-

The matrix P is a mirror symmetry, it maps (x1, z3) — (x1, —23), and is an example of

matrix and

a discrete symmetry. (The symmetry represented by P is the mirror symmetry parity.)
Hence, we see that the elements of O(2) are all parametrised by a single parameter 6.

We say that O(2) is a one parameter group, that is, it is one dimensional.

Elegant as lemma 2.14 is it has not really told us why the exponential map is needed
here nor has it told us anything about why 7 takes the form it does. To explain this we

need to introduce the notion of infinitesimal generators and some Lie theory.

2.4 Lie groups and infinitesimal generators

Let Gy be the identity connected component of a Lie group G; we wish to consider group
elements which are ‘near ¢’. As all the Lie groups what are of interest to us are matrix
Lie groups we content ourselves with the following construction: As 1 € Gy and G is a
n X n matrix Lie group, i.e. a group for which we have a notion of ‘nearness’, we may
consider those group elements which are infinitesimaly close to the identity: in particular

we consider those elements g(06) of the form
g(00) — 1 = 0(00),

such a construction is possible because of the continuous nature of the symmetry groups.

Such elements g(d6), for infinitesimal §6°, are of the form

1+ i 766"
i=1

where the set {77}; are constant coefficient matrices known as the infinitesimal generators

of the (matrix) Lie group. It follows from Taylor’s theorem that 7¢ are given by
7' = —i[0yig](0) .
Remark: We remark that strictly speaking our discussion only applies to the identity

connected component of the Lie group. However, this (obvious) technical point will not

bother us further.



Example 2.15 (SO(2)). The infinitesimal generator of SO(2) is easily seen to be given

by
d cosf siné 0 =«
T = —1—— =
df \ —sinf cosh 6=0 —i 0

which we saw earlier.
As infinitesimal generators physically correspond to infinitesimal changes in the group

one might expect that by performing a large number of them one can recover a finite

group element. Indeed, one has the following

Lemma 2.16. Let Gy be the identity connected component of a Lie group G have the
following family of infinitesimal generators {T'}ic,. The generator g;(0) corresponding

to each {T'}ic, may be recovered by the exponential map, i.e. g;(0) = exp(if1?).

Proof. Consider g(60) = 1 + 667", i.e. an infinitesimal variation about the idenitity;
then as a finite variation g;(6) is the result of many applications of inifinitesimal ones

we have that

gi(0) = lim (g(60))" = lim (1 +4d07")" = lim (1 + ng’)n = exp(if7).

n—oo n—oo n—oo

Hence, if we exponentiate the infinitesimal generators we recover the generators and, in

this sense, Gy. n

We close this section with the useful Baker-Campbell-Hausdorff formula which may
be stated thus: let A, B be two n X n matrices then

1
exp Aexp B = exp (A+B+§[A,B] —|—...),

a corollary of which is that the Lie group arising as the exponential of an Abelian Lie
algebra is also Abelian.
2.5 The rotation group...revisited

There is nothing special about the choice of 2x 2 matrices in our discussion, our argument

is valid for any n € N; viz.



Definition. The set {O € GL,(R) | O'O = 1} equipped with matriz multiplication
is called the orthogonal group O(n). The special orthogonal group SO(n) = O(n) N
SL,(R).

As SO(2) consisted of continuous rotations which kept % + x3 invariant it is easy to
see that SO(3) consists of continuous rotations which keep 2% + x5+ 3 fixed. The group
SO(3) is three dimensional; this follows from the consideration that any O € SO(3) has
nine elements, three of which are fixed by the condition O = O~! and the remaining
three from the consideration of the determinant. It is straightforward to write down the

rotation matrices R;

1 0 0
Ri(0) = 0 cosf sinf |,

0 —sinf cosf

cos¢p 0 —sing

Ry(¢) = 0 1 0 :
sing 0 coso
cosy siny 0
R3(¢) = —sinty costy 0
0 0 1

from which we define, in analogy with SO(2), the infinitesimal generators of the rotation

group
7=

id0 |,

The appearance of the —i is merely convention. The matrices 7¢ are given by
0 00 -1 0
1|, ?==i] 00 0 and 70 =—i| —1
0 1 0 0

0 0
Th=—i| 0 0
0 0

—1

It is straightforward to show that these matrices satisfy the commutation relation [r%, 77] =
i€k rk,

Infinitesimal rotations about some angle 66 about the i axis are given by

Ri(60) = 1 +i7'00.



If we now consider a rotation about the i axis through some angle § = N66 (N — o0)
we see that 4

Ri(0) = (1 +ir'00)" = (1 + z'TiN)N — expiT'f.
It is straightforward, but tedious, to confirm that this reproduces the three matrices

given earlier.

In order to see how SO(3) acts on functions f we need a representation which respects
the group properties and can meanifully act on a function space. This is clearly provided
by taking L, = yp. — zp,, etc., where p = —ihV is the momentum operator. Then
expif-L is a representation of S O(3) and we see that angular momentum is the generator

of rotation.

Example 2.17 (Rotation invariance). Let f € C1(R3) be defined by f(x,y,2) = g(a?® +
Y2 + 2%) where g € CY(R), then under the left action of exp(if - L), L the angular

momentum operator from above and g € R3, g - Lf = 0; hence, f — f' = f under

SO(3).

2.6 Lie groups and Lie algebras

We have already seen that if we exponentiate the generators of the rotation group we
recover the group elements. This is illustrative of a more general piece of theory which

we mention now.

Corresponding to every Lie group G is a Lie algebra g which is a flat vector space
with a Lie bracket or commutator defined for a set of vector fields {77};c, which can

serve as the basis for the space.

Definition. A Lie algebra is a vector space V' over a field F equipped with a binary
operation [-,-] : V- x V + V called the Lie bracket which satisfies:

i) bi-linearity [ax + by, z] = alz, z| + bly, z| for all scalars a,b € F and x,y,z € V;

ii) skew-symmetry, [x,y] = —[y,z| for all x,y € V;

iii) the Jacobi identity [z, [y, z]] + [y, [z, z]] + [z, [, y]] = 0 for all x,y,z € V.

We write the Lie bracket as [7%, 7] = 1 7" where the 4 .. are known as the structure
constants of the Lie algebra. The structure constants uniquely determine the Lie algebra
(this powerful result is known as Lie’s theorem). If the structure constants all vanish

then the Lie algebra is said to be Abelian. We remark that in the instance that the



vector space V' has an associative product * defined on it we can identify the Lie bracket

with the commutator [z,y] =z xy —y*z for all z,y € V.

Proposition 2.18. The commutator satisfies the Jacobi identity.

Proof. The follows from [z, [y, z]] = zly, z] — [y, z]x = zyz — 22y — yza + zyx and its

cyclic permutations. 0

Example 2.19 (M, (F)). The linear space M,,(F) of all n x n matrices over the field
F equipped with the commutator [A, Bl = AB — BA where the product is understood to

be matrix multiplication is a Lie algebra.

Example 2.20 ((R?, x)). The cross product x : R* x R? — R? is an antisymmetric
binary mapping which satisfies the Jacobi identity; hence, [x,y] = x X y defines a Lie

bracket on R3.

Proposition 2.21. Let {7'}; be the set of infinitesimal generators of a matriz Lie group.

The matrices {T'}; form a Lie algebra.

Proof. The proof is trivial: we note that {7°}; are square matrices so we a priori have

the necessary linear space structure, an associative multiplication and commutator. [

It is perhaps useful to remark on a piece of the history of this subject, Lie originally
referred to these algebras as infinitesimal groups. However insightful this language is to

us we continue to adopt the modern parlance.

We denote the Lie algebra produced in the above fashion from the (matrix) Lie group
G by g. The astute reader will be wondering why we did not simply take the matrix Lie
group itself to be its Lie algebra. The reason for this resides within the general theory
of Lie algebras and is beyond the scope of this course. The interested reader is directed
to 85 of Nakahara M., Geometry, topology and physics, Institute of Physics publishing
or the previously mentioned Les Houches essay.

Example 2.22 (s0(3)). The Lie algebra so0(3) corresponding to SO(3) is defined by the

relation 1%, 7] = i€k 7k,



2.7 The special unitary group

In this section we consider another important example in physics.

Definition. The set {U € GL,(C) | UU = 1} equipped with matriz multiplication
forms a group known as the unitary group U(n). The subgroup SU(n) = U(n)NSL,(C)

1s known as the special unitary group.

We first remark that if we restrict the elements of a U(n) matrix to be real then
U(n) =0(n).

We now specialise to SU(2) where we have the following observation:

Proposition 2.23. There are 3 real degrees of freedom associated with a SU(2) matriz.

Proof. Let a,b,c,d € C then an element of GLy(C) written

()

has 8 real degrees of freedom. The requirement that MT = M~ and det M = 1 is
essentially the relations a = d, b = —¢ and ad — bc = 1 which reduce the total degree of

freedom by two, two and one respectively. O

Hence, we expect to be able to find 3 independent elements which characterise SU(2).

Example 2.24 (SU(2) and su(2)). The set

01 0 — 1 0
O = Oy = . o 0z =
10 ¢t 0 0 -1

obey the following commutation relation

. Ok
= €5k~ -

[O’i 0j
2

272

This relation can also be used to define a group. Indeed, using the exponential map we



construct the three group elements

isinf/2 cosf/2

B cos /2  sing/2
Us(9) = <_Sin¢/2 coscﬁ/?)’

v
Z/{g('l/}) = ( O e*id)/z > .

As such we have family of 2 X 2 matrices for whom Z/{;r =U;*; such matrices are known

U(0) = exp(iflo,)2) = ( cosf/2 isin6/2> ’

as unitary matrices. Moreover, since detU; = +1, these matrices are special. In fact, we
have constructed the group SU(2); the group of 2 X 2 unitary matrices with determinant
+1. This group is known as the special unitary group. The Pauli matrices define the

Lie algebra su(2).

2.8 Recovering the Lie group from a Lie algebra

We have indentified a curious phenomena; namely, that a Lie algebra does not have
to correspond to a unique Lie group (c.f. s0(3) and su(2)). If we think about the
construction of a Lie algebra g from Gy it is not perhaps suprising since the construction
is local, i.e., it is based on elements near e = 1, and as such is not sensitive to the global
characteristics of the group. Hence, that SO(3) and SU(2) have the same Lie algebra
is just the statement that locally they are the same. However, they are clearly very

different groups.
We state, but do not supply the proof to, the following
Theorem 2.25. To every Lie algebra there corresponds a unique simply connected Lie

group.

The reader interested in this result, in relation to SO(3) and SU(2), is directed to
§3.16 of Schutz B., Geometrical methods of mathematical physics, Cambridge.



2.9 Spinors and rotations
We have already seen that SO(3) and SU(2) appear to be related at least locally, i.e.
SO@3) s exp(if-7) < exp(if-o/2) € SU(2).

Therefore, we are motivated to understand the relationship between rotations and SU(2).
We shall establish the following:

Proposition 2.26. Let x € R® and M = x - o, then a SU(2) transformation M
M' =UMU' is the same as x — x' = Ox where U € SU(2) and O € SO(3).

Proof. Let x € R? then we may construct a matrix M from x using

z T — 1y
M=x 0= .
r+iy —z

If we act on M with a SU(2) transform,
M— M =UMU",

then it is clear that det M = det M’. Moreover, the matrix M’ may also be written in
the form o - x’. Hence, since det M = —|x|?> we conclude that M +— UMUT is the same

as a SO(3) transformation on x. O

This is not suprising since we know that the Lie algebra of SU(2) and SO(3) obey
the same Lie bracket relation. In fact, by exponentiating the two Lie bracket relations

to obtain the group elements
SO(3) : exp(if'r’) and SU(2) : exp(if'c’/2)

we see, by compairing these two relations, the fundamental distinction between vectors
and spinors: a vector is invariant under a rotation of 2w whereas a spinor needs a 4w

rotation to return it to its original configuration.

Formally, we say, since there are two elements in SU(2) corresponding to a single
element in SO(3), that SU(2) is a double cover of SO(3).



