
CHAPTER 4

Scattering of quantum particles

Deadline for exercises: This weeks *-exercises should be uploaded via SDU Assign-
ment before Tuesday 8/3 at 2pm.

4.1 Transfer matrices

Subject keywords: transfer matrices, potential steps and barriers with constant po-
tential.

Literature: “Notes on transfer matrices” below. The other sections on scattering
will be used in the next class and thus serve for this class only as motivation for
calculating transfer matrices.

Exercises: below the notes.

Notes on scattering:
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Imagine a particle with definite energy E = !ω and therefore a wave function that
separates as Ψ(x, t) = ψ(x)e−iωt. Initially the particle is moving toward the right
on the left side of the potential barrier shown above (i.e., at x < xl) with definite
momentum p = !kl =

√

2m(E − Vl). Thus the incident particle is represented by
the spatial wave function

ψin = Aeikl(x−xl), x < xl, (4.1)

where A is a constant and the shift by xl has been introduced for later convenience.
If you are uneasy about representing a particle by a non-normalizable wave function
such as this one, then you can imagine that the wave function instead represents a
constant current of particles. The particle (or particle current) might be reflected
backwards when it hits the barrier. To take this into account we include a left-
moving component to the wave function, such that the full wave function to the left
of the barrier is given by the form

ψ = Aeikl(x−xl) +Be−ikl(x−xl), x < xl, (4.2)

with B another at the moment unknown constant. Also, the particle might pass
across the barrier, so to the right of the barrier we have

ψ = Ceikr(x−xr), x > xr. (4.3)

with C yet another unknown constant and kr =
√

2m(E − Vr)/!2.
Let us first recall the probability flows corresponding to these wave functions.

Remember that the probability density ρ = |ψ|2 obeys the continuity equation

∂ρ

∂t
= −

∂j

∂x
(4.4)

where the current of probability is given by

j =
i!

2m

(

Ψ
∂Ψ∗

∂x
−Ψ∗∂Ψ

∂x

)

=
i!

2m

(

ψ
∂ψ∗

∂x
− ψ∗∂ψ

∂x

)

(4.5)

In week 3 you calculated the current corresponding to the given parts of the above
wave function and found (or at least was supposed to find)

j =

{

!kl|A|2/m− !kl|B|2/m , x < xl

!kr|C|2/m , x > xr
. (4.6)

In particular you should have noticed that there is no cross term between the flow
of probability from the incident and reflected parts. Thus on the left side we can
interpret !kl|A|2/m as the probability flow of the incoming wave and !kl|B|2/m as
the probability flow of the reflected outgoing wave. The ratio of these two probability
flows

r =
|B|2

|A|2
(4.7)
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will correspond to the fraction of particles that are reflected by the barrier and we
will call it the reflection coefficient. Similarly, the ratio

t =
kr|C|2

kl|A|2
(4.8)

gives the fraction that penetrates to the right hand side, and we will call this the
transmission coefficient. Notice here the factor kr/kl, which will be unity only if Vl =
Vr. Also notice that the parts of the current given in Eq. (4.6) are constant in space
and time. In fact, given that we study a stationary situation with ρ independent of
time t, then we see immediately from Eq. (4.4) that j must equal the same constant
everywhere in space. Therefore the two expressions for the current in Eq. (4.6) must
be equal, and we have

kl|A|2 − kl|B|2 = kr|C|2. (4.9)

From this we obtain that we will always have r + t = 1. The particles thus have a
probability of one to be either reflected or transmitted, which of course must be the
case. To be able to calculate the specific values of r and t for a given potential it is
convenient to introduce the method of using transfer matrices.

Notes on transfer matrices: The time-independent Schrödinger equation

−
!2

2m

∂2ψ

∂x2
+ V ψ = Eψ (4.10)

is an ordinary second order differential equation with a general solution that has two
arbitrary integration constants. Thus, if we specify the values ψ(x0) and its spatial
derivative ψ′(x0) = ∂ψ/∂x|x=x0

at some point x0, i.e., specify the vector

X(x0) =

(

ψ(x0)
ψ′(x0)

)

(4.11)

then we can find these integration constants. And knowing the integration constants
we can find the value of the vector X(x1) at any other point x1 in space. Since the
Schrödinger equation is linear then the mapping from X(x0) to X(x1) will also be
linear. Thus we can write the mapping as a product with a matrix

X(x1) = T(x1, x0)X(x0) (4.12)

where the 2 × 2 matrix T(x1, x0), called a transfer matrix, depends on the energy
E and the potential V in between x0 and x1. Similarly, if we want to map X(x1)
to the value of the vector X(x2) at x2, then we need to multiply by the transfer
matrix T(x2, x1) between these two points. But this means that the transfer matrix
between x0 and x2 is given by

T(x2, x0) = T(x2, x1)T(x1, x0) (4.13)

Thus if we can divide a potential into intervals for which we know the transfer
matrices, then we can quickly find the overall transfer matrix by multiplying the
transfer matrices for each interval.



4.1 TRANSFER MATRICES 21

Application to scattering: As an example of the use of transfer matrices consider the
situation in the notes on scattering with the following simple potential:

V

V

x x

V

l r

l

r

x

Vb

For this potential we can calculate the transfer matrix immediately as

T(x+
r , x

−
l ) = T(x+

r , x
−
r )T(x−

r , x
+
l )T(x+

l , x
−
l ) (4.14)

if we have figured out the transfer matrices for finite potential jumps and finite
stretches of constant potential. Notice that we, due to the singular behavior of the
potential, are careful about whether we are just to the left of a singular point, e.g.
x−
l , or just to the right, e.g. x+

l . Knowing the transfer matrix T(x+
r , x

−
l ) we can

then write out the equation X(x+
r ) = T(x+

r , x
−
l )X(x−

l ) more explicitly as

T(x+
r , x

−
l )

(

A +B
ikl(A−B)

)

=

(

C
ikrC

)

(4.15)

which becomes 2 equations with the 3 unknowns A, B and C when the matrix mul-
tiplication has been carried out. This is not enough equations to solve explicitly for
the three unknowns. However, we can obtain explicit expressions for the ratios B/A
and C/A, which is enough to calculate the reflection coefficient r and transmission
coefficient t explicitly for these kinds of scattering problems.

4.1.1 Exercise: Calculations of transfer matrices

Find the transfer matrices for the following situations

(*a) For a finite potential step as in the figure above, from just to the left of the
step at x−

l to just to the right at x+
l .

(*b) For a finite stretch of length a where the potential has the constant value Vb,
which is smaller than the energy E. Hint: the final result is

T(x−
r , x

+
l ) =

(

cos(kba)
1
kb
sin(kba)

−kb sin(kba) cos(kba)

)

(4.16)

where a = xr − xl and kb =
√

2m(E − Vb)/!2.
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(*c) Same question, but now with Vb > E.

(*d) From x−
l to x+

r for the potential in the figure just above.

(e) The transfer matrix that you found in the previous question should become
the identity matrix for some values of the energy E. For these situations, find
out how the wavelength of the wave function inside the barrier is related to
the width a = xr − xl of the barrier.


