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Closed form expressions for RF MEMS switch actuation and release
times are derived. The expressions account for the mechanical and
electrical parameters and are valid for V . 1.15 VP and Q . 0.1
where V is the actuation voltage, VP is the pull-in voltage, and Q is
the mechanical quality factor.

Introduction: RF MEMS switches offer substantially higher perform-
ance than conventional diode or transistor based RF switches [1, 2].
For many applications, the switching speed is a critical specification.
The switches are based on mechanical movement between the open
and closed states, and the actuation speed is limited by the mechanical
response time. The actuation dynamics is nonlinear and numerical mod-
elling has been used to characterise the switch dynamics [3]. This
approach is accurate but does not offer design intuition.

In this Letter, we derive simple analytical expressions for the switch-
ing actuation and release times. The expressions are valid for typical
switch operation regimes and allow evaluation of the switch perform-
ance and its sensitivity to process variations.

Switch dynamics: The RF MEMS switch shown in Fig. 1a is governed
by the equation of motion
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where m is the movable electrode mass, g is the damping coefficient, k is
the spring constant, x is the movable electrode displacement, 1 is the per-
mittivity of a free space, A is the electrode area, d is the open state elec-
trode gap, and V is the actuation voltage. Equation (1) is nonlinear and
does not have a closed form solution. The switch displacement as a func-
tion of time can be obtained using numerical integration as shown in
Fig. 1b. We make the following observations.

1. The switch spends the majority of the time reaching the half-way
point. The final half of the gap is closed rapidly. For most of the time,
the gap is relatively large and the gap dependent damping can be
taken as constant.
2. The numerical simulations closely resemble the switch behaviour
shown in Figure 3 in [3]. This further justifies neglecting the gap depen-
dency in the damping coefficient.
3. Owing to switch inertia, the switch moves initially slowly. Later, the
damping limits the switch velocity.
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Fig. 1 Operation of capacitive RF MEMS switch

a Model for capacitive switch [3]
b Results of numerical integration of (1)

Actuation time: If the spring and damping forces can be ignored, we can
obtain a closed form expression for the switching time. The work done
by the capacitive actuator in moving from the open position to location
xa is
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If the damping coefficient and the spring constant are zero, this work is
done against the switch mass, which will gain kinetic energy 1

2 m_x2 ¼ W .
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Solving for the switch velocity _x, we have
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From velocity _x ¼ ðdx=dtÞ, the time to travel a small distance dx is dt ¼
dx/x

.
. Using (3), the inertia limited switch actuation time is
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where we have used the expression VP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8=27Þðkd3=1AÞ

p
for the pull-

in voltage [1, 2].
Another limiting case for the switch closing time is obtained by ignor-

ing the switch inertia. By setting m ¼ 0 and solving for the velocity, (1)
gives
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The damping limited switch actuation time is obtained from integrating
dt ¼ dx=_x, which does not have closed form solution. The spring force
kx, however, is relatively small at small displacements and we can sim-
plify the integrand with a Taylor series expansion to give
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Using the pull-in voltage, (6) can be written as
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A good general approximation for the switch actuation time is obtained
by summing the inertial and damping limited switching times given by
(4) and (7), respectively, to give

tclose ¼ tm þ tg ð8Þ

For the switch in Fig. 1, (8) gives switch actuation times of 25 and 50 ms
for V ¼ 35 V and V ¼ 50 V, respectively, which agrees well with the
24 and 51 ms in [3].
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Fig. 2 Simulated (circles) and approximate calculated (solid line) switch
closing times for V ¼ 1.2VP

Fig. 2 shows a comparison of the analytical switch closing time given
by (8) and results from the direction numerical integration of (1). The
maximum error for V . 1.15 VP and Q . 0.1 is less than 20%. To
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reduce the contact bounce, the quality factor for the RF MEMS switches
is usually 0.2 , Q , 5 [1], which is covered by the approximate
expression (8). For actuation voltages smaller than V ¼ 1.15 VP, the
switching time grows as the switch spends significant time reaching
the pull-in point and the Taylor series expansion in (6) is no longer
accurate.

Switch release time: The actuator opening time can be estimated in a
similar fashion. Ignoring the damping, the switch release time can be esti-
mated by the principle of energy conservation ð1=2Þm_x2 ¼ ð1=2Þ
kd2 � ð1=2Þkx2. Solving for the velocity gives
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The opening time is obtained from integrating dt ¼ dx/x
.

from x ¼ d to
x ¼ 0 giving
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If damping is significant and inertial effects can be ignored, the switch
opening time is obtained by solving
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which has the solution x ¼ de 2(g/k) t. The time for the switch to be 80%
open is t ¼ g/k ln 5 ’ 1.6 (1/v0Q). Thus, depending on the quality
factor, the switch release time is
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Equation (12) is accurate to 20%.
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Conclusion: Closed form expressions derived for RF MEMS switch
actuation and release times depend only on the mechanical quality
factor, the resonance frequency, the actuation voltage, and the pull-in
voltage. The expression can be used to design the switch to meet the
desired actuation and release times. The optimal operation regime is
seen to be 0.5 , Q , 2, where switching speed is not limited by
damping but excessive ringing and switch bounce is avoided. For
lower quality factors, the damping significantly increases the switching
times.
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