
Proof that Cosmological redshift is equivalent to Doppler red 
shift

This proof is based on that presented by Jayant N Narlikar in 'Spectral shifts in General Relativity' 
in the American Journal of Physics October 1994. It corrects the invalidity of Narlikar's proof 
arising from his use of bases that do not exist. Equation numbers are chosen to match Narlikar's 
where applicable.

The FLRW metric centred at S gives the following formula for the line element:

ds2 = dt2 – a(t)2 [dr2/(1-kr2) + r2(dθ2 + sin2θ dφ2)] [7]

t, r, θ and φ are the 'comoving coordinates'. r is often denoted by χ, but here we use r.
Where we do not explicitly indicate a coordinate system, the co-moving coordinate system will be 
assumed.
a(t) is the cosmic scale parameter at cosmic time t.
The values of the metric components in this coordinate system are:
g00 = 1; g11 = -a(t)2/(1-kr2); g22 =  -a(t)2r2; g33 = -a(t)2r2sin2θ [7a]
All other components (the off-diagonal ones) are zero. We will only need to use the first two of the 
four nonzero components.
Since the metric is diagonal in the comoving coordinates, we also have the following inverse 
components:
g00 = 1; g11 =-(1-kr2)/a(t)2; g22 and g33 are not used. [7b]

Let S denote the spacetime event of emitting the signal that is seen by the observer at the spacetime 
event denoted by O.

Let WO and WS be the four-velocities of the observer and source at O and S respectively, both of 
which are stationary with respect to the CMBR. By definition ||WO|| = 1 = ||WS||  [9a]. 

We will be using three different reference frames in what follows:
• the FLRW frame centred on S (the “FS frame”)
• the FLRW frame centred on O (the “FO frame”)
• the inertial (Lorentz) frame of the observer at O (the “MO frame”)

For coordinate-dependent items the applicable coordinate system will be denoted by a pre-subscript 
such as in FOWS, except that we will omit the pre-subscript for items expressed in the FS frame, as 
that is the one we will use the most.

Parameterise the null geodesic Λ from S to O by λ:[0,1]→Λ.

Let ŴS be the result of parallel transporting WS along the null geodesic Λ from S to O, and let 
W*(u) be the intermediate transported vector at λ(u). 

Along Λ we have, from [7], since θ and φ do not change, and ds=0: 
dr/√1-kr2 = dt/a(t) [10]
The sign is positive because r increases with t (recall that r is radial distance from S).

First we need to write the equation for the geodesic Λ in terms of an affine parameter u. So that the 
geodesic is λ:[0,1]->Λ. To do this we write the following geodesic equation. But first, note that in 
what follows we do not specify the centre for our FLRW coordinates. Hence equations 11-16a are 
valid for any FLRW system, provided the value of r appropriate to the given system is used.



 d2xi/du2 + Гi
kl (dxi/du) (dxk/du) = 0 [11 – see Schutz 6.51]

We calculate the Christoffel symbol's value for i=0 as follows:

Г0
kl = ½g0β (gβk,l + gβl,k – gkl.β) [11a – see Schutz 6.32]

= ½g00 (g0k,l + g0l,k – gkl.0) [since  g0β = 0 unless β = 0]
= ½g00 (2g00,l – gkl.0)
= -½gkl,0 [since g00 = g00 = 1, which is constant]

Hence [11] for i=0 becomes:
0 = d2t/du2 – ½gkl.0(dxk/du) (dxl/du) 

= d2t/du2 – ½g00,0(dt/du)2 – g11,0(dr/du)2 [since dθ/du and dφ/du must be zero]
= d2t/du2 – ½(∂(a(t)2/(1-kr2))/∂t)(dr/du)2 [since g00 is constant at 1]
= d2t/du2 – (dr/du)2 a(t)a'(t)/(1-kr2) [12]
= d2t/du2 – (dr/dt)2 (dt/du)2 a(t)a'(t)/(1-kr2)
= d2t/du2 – ((1-kr2)/a(t)2)(dt/du)2 a(t)a'(t)/(1-kr2) [by 10]
= d2t/du2 – (dt/du)2 a'(t)/a(t)
= a(t) d((dt/du)/a(t))/du

Hence, as a(t)≠0 we have
0 = d((dt/du)/a(t))/du, whence:
(dt/du)/a(t) = A for some constant A. [13]
Hence dr/du = (dr/dt)(dt/du) = Aa(t) x (√1-kr2)/a(t) [by 10]

= A√1-kr2

So (dr/du)/√1-kr2 = A [14]

This enables u to be determined as a function of r (as the light moves from S to O) and hence of t. It 
is convenient and permissible to set u=0 at S and u=1 at O.
Integrating [13] we obtain:
A = ∫0

1A du =  ∫t(O)
t(S)dt/a(t) [15]

Let the tangent vector to the geodesic Λ at λ(u) be U(u). In the comoving coordinates this has 
components 
[dt/du, dr/du, dθ/du, dφ/du]. The last two are zero and the first two are given by [13] and [14], hence 
the components are:
U(u) = [Aa(t), A√1-kr2, 0, 0] [16a]
and U(1) = [AaO, A√1-krO

2, 0, 0] [16b]
where rO is the radial comoving coordinate of O. This is the first equation that assumes a specific 
centre (S) for the FLRW system.

Let the vector WS parallel transported from S to λ(u) be W*(u). Hence W*(1) = ŴS. Then, as 
parallel transport preserves magnitude and direction, both ||W*(u)|| = g(W*(u),W*(u)) and 
g(W*(u),U(u)) must be constant over u [17].

Now we must have W*2(u) = W*3(u) = 0 because otherwise the parallel transportation establishes a 
preferred direction in space, circumferential to S, which contradicts the isotropy assumption. [This 
is a bit hand-wavy. Seek to make it more rigorous]

Hence ||ŴS|| = ||W*(1)|| = ||W*(0)|| = ||WS|| = 1 [by 9a]. [18a]
And g(ŴS, U(1)) = g(W*(1),U(1)) = g(W*(0),U(0)) = g(WS,U(0)) [18b]
From [18a] we get 1 = ||ŴS|| = gO(ŴS, ŴS) = gik(O) Ŵi

S Ŵk
S

= g00(O) (Ŵ0
S)2 +  g11(O) (Ŵ1

S)2 
[as off-diagonal elements of g are zero everywhere in spacetime [from 7] and Ŵ2

S = Ŵ3
S = W*2(1) = 



W*3(1) = 0.]
= (Ŵ0

S)2 – (aO
2/(1-krO

2)) (Ŵ1
S)2  

Hence (Ŵ0
S)2 – (aO

2/(1-krO
2)) (Ŵ1

S)2 = 1 [19]

From [18b] we get gO(ŴS, U(1)) = gS(WS,U(0)), hence
gik(O) Ŵi

S U(1)k = gik(S) Wi
S U(0)k

The left-hand side is: 
 = g00(O)Ŵ0

SU(1)0 + g11(O)Ŵ1
SU(1)1 [since Ŵ2

S = Ŵ3
S = 0]

 = Ŵ0
SU(1)0 - (aO

2/(1-krO
2)) Ŵ1

SU(1)1 
 = Ŵ0

S
 AaO - (AaO

2/(√1-krO
2)) Ŵ1

S  [by 16a]
 = A(aO Ŵ0

S - (aO
2/(√1-krO

2)) Ŵ1
S)

The right-hand side is (note that, since we are operating in TSM here, we have to switch to FO, the 
FLRW basis centred at O, in order for the components to be well-defined):
 = FOg00(S) FOW0

S FOU(0)0 + FOg11(S) FOW1
S FOU(0)1 [since U(0)2=U(0)3=0 because the light 

ray is radial. This is also a bit hand-wavy]
 = FOg00(S) FOU(0)0 
[since the FLRW spatial coordinates of S are constant, so WS = [1,0,0,0] in the FO frame] 
 = FOU(0)0 [by 7a]
 =  AaS [by 16a]

Hence aO Ŵ0
S - (aO

2/(√1-krO
2)) Ŵ1

S = aS [20] 

Next we note that the four-velocity of the observer has components [1,0,0,0] in any FLRW frame 
(because the observer has zero spatial coordinate velocity in that frame) and also in the observer's 
inertial frame at O. Hence the time basis vectors of the MO and FS frames must be identical: e0(O) 
= MOe0.
Now  ŴS = MOŴi

S MOei = Ŵi
S ei(O) = Ŵ0

S e0(O) + Ŵ1
S e1(O) = Ŵ0

S MOe0 + Ŵ1
S e1(O) 

Hence, since both bases are orthogonal, we have MOŴ0
S  = Ŵ0

S and, by rotating the Lorentz frame 
appropriately around O, we can without loss of generality choose our basis vector MOe1 so that it 
aligns with e1(O). Then, since  ŴS = [Ŵ0

S, Ŵ1
S, 0, 0] in the FS basis, we can write ŴS = [γ, γV, 0, 0] 

in the MO basis, where MOŴ0
S = γ = 1/(√1-V2) = Ŵ0

S and V has the same sign as Ŵ1
S (because γ is 

positive and the corresponding basis vectors, MOe1 and e1(O), point in the same direction).
Hence ||ŴS|| = g(ŴS, ŴS) =  γ2 - (γV)2 = γ2 - (aO

2/(1-krO
2)) Ŵ1

S
2

where we calculate the magnitude in the MO and FS bases and equate the results.
Hence (γV)2 = (aO

2/(1-krO
2)) (Ŵ1

S)2

and so γV = +aO/(√1-krO
2)) Ŵ1

S [21]
where the sign is positive because γ is positive and V and Ŵ1

S have the same sign.

Now the red shift is given by:
1+z = aO/aS [8]

= aO/(aO Ŵ0
S - (aO

2/(√1-krO
2)) Ŵ1

S) [by 20]
= 1/(γ - (aO/(√1-krO

2)) Ŵ1
S) = 1/( γ – γV) [by 21]

= (1/γ)/(1-V) = √(1-V2)/(1-V) = √((1-V)(1+V)/(1-V)2) = √((1 + V)/(1-V)) [22]
This is the same formula as for a Doppler shift within a Lorentz frame.
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