Transient Heat Conduction in 1D Spherical
Geometry by Crank-Nicolson Finite Difference

By: mfig

Consider the 1D spherical, transient heat conduction equation:
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Where a is the thermal diffusivity a = A/pcp- For time discretization, use Crank-Nicolson:
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For spatial discretization, use central differences to ensure 2" order accuracy
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Now put them together.
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Get all of the unknown temperature values at the forward time step on one side
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This can be written more succinctly as
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Now use the following symbols to simplify
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If temperatures are prescribed at the center and on the boundary, then we are done. Below is an example. With initial
temperature 100K, suddenly the boundary is set to 20K while the center of a sphere with radius 1 m is kept at 100 K. The
solution is given after 0.01s for an a=1.5 m?/s. The C-N solution is compared with a coarse mesh FEM solution. C-N
solution used 101 spatial nodes and 30001 time steps, while the FEM used 16 elements and 100 time steps.
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If flux symmetry at the center of the sphere is instead enforced, then we use (by L'Hopital at r=0):
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Putting like terms on each side of the equality
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Now equating the nodes on either side of the center by symmetry
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An example was compared to a coarse mesh FEM analysis with the same physical parameters as above but with the flux
symmetry at the center enforced. The solution was compared at t=0.025s, as shown below.



Solution After 0.025s
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If the flux at the boundary is prescribed such that
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Then we can just plug this in to the original C-N formulation. i.e.,
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A comparison was made with the same physical parameters as above. The center of the sphere has the symmetric flux
formulation and the boundary has a negative flux of -.45W/m?and thermal conductivity of 1.5 W/mK.



Solution After 0.01s
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The MATLAB code for the first example is listed below.

[

% Crank-Nicolson in spherical coordinates for fixed center and boundary
% temperature. Spherical symmetry is assumed.

Te = 1; % End time

Re = 1; $ End length

N = 30001; % Number of time nodes (>1)
K = 101; % Number of space nodes (>1)
r = linspace(0,Re,K); % Nodes

alph = 1.5; % Diffusivity

dt = Te/(N-1) ;

dr = Re/(K-1);

A = alph*dt/(dr*2); % Useful parameters
B = alph*dt/ (2*dr) ;
T = 100*ones(K,1l); % Initial Temparature

Tc = 100; % Center temperature
Tb = 20; % Boundary temperature
DO = [1,repmat(1+A,1,K-2),1];

Dnl = [-(A/2 - B./r(2:K-1)),0];
Dpl = [0,-(A/2 + B./r(2:K-1))1];
M = diag(D0) + diag(Dnl,-1) + diag(Dpl,1l); & The LHS array

for ii = 1:300

Tmp = [Tc;
(A/2 - B./r(2:K-1)"').*T(1:K-2) + (1-A)*T(2:K-1) + (A/2 + B./r(2:K-1)') .*T(3:K);
Tb] ;

T = M\Tmp;

end




