
12/17/2008 Page 1 of 6 hotvette

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′

′

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

2

2

1

1

2
2
2

2
2
2

3
2

1
2
1

3
1

1
2
1

0123
1
1
0123

y
y
y
y

d
c
b
a

xx
xxx
xxx

xx

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′′

′′

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

2

2

1

1

2

2
2
2

3
2

1
2
1

3
1

1

0026
1
1
0026

y
y
y
y

d
c
b
a

x
xxx
xxx

x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′′

′

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

1

2

1

1

1

2
2
2

3
2

1
2
1

3
1

1
2
1

0026
1
1
0123

y
y
y
y

d
c
b
a

x
xxx
xxx

xx

Cubic Spline Tutorial

Cubic splines are a popular choice for curve fitting because of ease of data interpolation, integration,
differentiation, and they are normally very smooth. This tutorial will describe a computationally efficient
method of constructing joined cubic splines through known data points. As background and motivation, we will
begin with a discussion of the basic cubic polynomial:

y = ax3 + bx2 + cx + d where x is the independent variable and a, b, c, d are real numbers

OK, what’s there to know? It was most likely studied in pre-University education, has three roots (real and/or
imaginary), the 1st derivative is a quadratic function, the 2nd derivative is a linear function, and it can be fit to
four points. Let’s dig a little deeper. The general cubic polynomial has four parameters or coefficients that
completely define the shape of the curve. Alternatively, we can consider a cubic polynomial as having four
constraints or degrees of freedom in physical terms (i.e. points and derivatives) that determine the four

parameters. The constraints can be four points, which means the equation can be
represented in the matrix form on the left. The solution to the matrix equation is
the four polynomial coefficients. However, there are other possibilities. The
four constraints can be three points plus a 1st or 2nd derivative at any arbitrary
point. Or, the constraints can be two points plus two derivatives, which is
actually the basis for cubic spline interpolation.

Let’s say we wish to represent a cubic equation as two points (x1, y1), (x2, y2)
plus first derivatives at those points (y1', y2'). How would that be done? Well,
let’s first take the derivative of the cubic equation, which is y' = 3ax2 + 2bx +
c. Thus, y1' = 3ax1

2 + 2bx1 + c and y2' = 3ax2
2 + 2bx2 + c. The matrix equation

defining the associated cubic polynomial is on the right. OK. How about two
points plus 2nd derivatives at the points? In that case, the equation of the 2nd
derivative is needed, which is y" = 6ax + 2b. Thus, y1" = 6ax1 + 2b and y2" =
6ax2 + 2b. The matrix equation defining the
associated cubic polynomial is on the left.
How about two points plus 1st and 2nd
derivatives at the first point? The matrix

equation for that is on the right. As can be seen, there are multiple ways to
formulate a cubic polynomial by specifying points and derivatives.

To illustrate, choose p1 = (0, 0) and p2 = (1, 1). The plots below indicate the result of using various boundary
conditions at the end points to define the cubic polynomial.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

4

3

2

1

4
2
4

3
4

3
2
3

3
3

2
2
2

3
2

1
2
1

3
1

1
1
1
1

y
y
y
y

d
c
b
a

xxx
xxx
xxx
xxx

12/17/2008 Page 2 of 6 hotvette

Note the last plot (on the right). It represents the equation y = x3. We know this because for this equation, y" =
6x. Therefore y(0)" = 6(0) = 0 and y(1)" = 6(1) = 6, which match the constraints used to generate the plot.

Alternate Cubic Polynomial formulation - before moving on, it is useful to consider the following (more
general) form of the cubic polynomial:

y = a'(x-x0)3 + b'(x-x0)2 + c'(x-x0) + d'

where x0 is an arbitrary reference point for the independent variable. The superscript (i.e. ') on a, b, c, d is used
to distinguish the coefficients from the previous case where xn is used instead of (x-x0)n. This form of a cubic
polynomial is just as valid as the previous version and is convenient in cubic spline interpolation because if x0 is
chosen as the value of the independent variable at the beginning of the spline segment, the quantity (x-x0)
begins at zero for each segment and the result is a consistent mathematical treatment for all segments. Also, if
the above expression for y is expanded and terms collected, it is easy to show that:

a = a' b = b' – 3a'x0 c = c' + 3a'x0

2 – 2b'x0 d = d' – c'x0 + b'x0
2 – a'x0

3

Clearly, if x0 is chosen as 0, the coefficients (and equations) are identical. As a simple example, consider the
equation y = 2x3 + 3x2 + 4x + 5. If x0 is chosen as 1, the following equation produces the exact same result: y =
2(x-1)3 + 9(x-1)2 + 16(x-1) + 14. Checking the result for consistency:

a' = 2 a = a' = 2
b' = 9 b = b' – 3a'x0 = 9 – 3(2)(1) = 3
c' = 16 c = c' + 3a'x0

2 – 2b'x0 = 16 + 3(2)(1)2 – 2(9)(1) = 16 + 6 – 18 = 4
d' = 14 d = d' – c'x0 + b'x0

2 – a'x0
3 = 14 – (16)(1) + (9)(1)2 – (2)(1)3 = 14 – 16 + 9 – 2 = 5

Now that we can think of cubic polynomials in terms of points and derivatives, let’s
connect two together. Why do that? The main reason is to have a smooth curve that
goes through (i.e. interpolates) a given set of points. Of course, it is possible to
derive a single polynomial of degree (n-1) to fit n points, but the end result is often
not satisfactory. A good example is the function y = x1/3 for x = 0 to 1. Picking four
points x = (0, 0.2, 0.6, 1), the resulting cubic polynomial can be seen to wiggle too
much to represent the desired function very well. This is often the case. Wait - can’t
the 1st or 2nd derivative be specified to force a better fit? Unfortunately, the answer
is no. The reason is that all four constraints were used up by requiring the curve to

interpolate four points. Remember, only four things (points, derivatives) can be specified.

Continuity – the concept of continuity is important in spline interpolation. If two polynomials are connected
together (end point of the 1st is the beginning point of the 2nd) but no other conditions are specified, the two
equations (or splines) are said to have C0 continuity, or zero derivative continuity. Though that can make some
interesting plots, it doesn’t result in a very smooth curve through the points. Additionally, if the 1st derivatives
at the connection points are forced to be equal, the curve is said to have C1 (i.e. 1st derivative) continuity. That

makes a smoother curve, but
an even smoother one can be
obtained if C2 continuity (i.e.
2nd derivative) is also
enforced. The traditional
implementation of cubic
splines for the purpose of
interpolating points uses C0,
C1, and C2 continuity.

12/17/2008 Page 3 of 6 hotvette

Development of Spline Equations

Consider the problem of constructing two cubic splines to fit three data points p1 = (x1, y1), p2 = (x2, y2), p3 = (x3,
y3). Refer to the last plot on the right, above. This is the simplest case of cubic spline interpolation that will
illustrate the methods used in more normal cases where several points are present. The key characteristics of
cubic spline interpolation are:

1. Curve passes through all specified data points (C0 continuity)
2. 1st derivative continuity (C1) at interior points
3. 2nd derivative continuity (C2) at interior points
4. Boundary conditions are specified at the free ends

Begin with the equations of the two splines (using the spline starting point for x0):

spline #1 (x1 ≤ x ≤ x2) spline #2 (x2 ≤ x ≤ x3)
y = a1(x-x1)3 + b1(x-x1)2 + c1(x-x1) + d1 y = a2(x-x2)3 + b2(x-x2)2 + c2(x-x2) + d2
y' = 3a1(x-x1)2 + 2b1(x-x1) + c1 y' = 3a2(x-x2)2 + 2b2(x-x2) + c2
y" = 6a1(x-x1) + 2b1 y" = 6a2(x-x2) + 2b2

For now, the focus will be on spline #1. Starting with the 2nd derivative, impose the compatibility constraints
that y" = y1" at x = x1 and y" = y2" at x = x2. Defining x2-x1 as h1:

y1" = 6a1(x1-x1) + 2b1 = 0 + 2b1 = 2b1 b1 = y1"/2
y2" = 6a1(x2-x1) + 2b1 = 6a1h1 + y1" a1 = (y2"-y1")/6h1

This results in the following equation for the 2nd derivative:

y" = (x-x1)(y2"-y1")/(x2-x1) + y1"

which can be verified to be correct (i.e. y" = y1" at x = x1 and y" = y2" at x = x2). Next, apply the conditions that
the spline must pass though the points, in other words y1 = f(x1) and y2 = f(x2):

y1 = a1(x1-x1)3 + b1(x1-x1)2 + c1(x1-x1) + d1 = 0 + 0 + 0 + d1 d1 = y1

y2 = (x2-x1)3(y2"-y1")/6h1 + y1"(x2-x1)2/2 + c1(x2-x1) + y1
y2 = h1

3(y2"-y1")/6h1 + y1"h1
2/2 + c1h1 + y1

y2 = h1
2(y2"-y1")/6 + y1"h1

2/2 + c1h1 + y1

y2-y1 = y2"h1
2/6 - y1"h1

2/6 + y1"h1
2/2 + c1h1

(y2-y1)/h1 = y2"h1/6 - y1"h1/6 + y1"h1/2 + c1
(y2-y1)/h1 = y2"h1/6 - y1"h1/6 + 3y1"h1/6 + c1
(y2-y1)/h1 = y2"h1/6 + y1"h1/3 + c1 c1 = (y2-y1)/h1 – y2"h1/6 - y1"h1/3

Finally, impose the compatibility condition that y2' in spline #1 must equal y2' in spline #2:

3a1(x2-x1)2 + 2b1(x2-x1) + c1 = 3a2(x2-x2)2 + 2b2(x2-x2) + c2
3a1h1

2 + 2b1h1 + c1 = c2
h1(y2"-y1")/2 + y1"h1 + (y2-y1)/h1 - y2"h1/6 - y1"h1/3 = (y3-y2)/h2 – y3"h2/6 – y2"h2/3
h1(y2"-y1")/2 + y1"h1 - y2"h1/6 - y1"h1/3 + y3"h2/6 + y2"h2/3 = (y3-y2)/h2 - (y2-y1)/h1

3h1(y2"-y1") + 6y1"h1 - y2"h1 - 2y1"h1 + y3"h2 + 2y2"h2 = 6(y3-y2)/h2 - 6(y2-y1)/h1

3h1y2" – 3h1y1" + 6y1"h1 - y2"h1 - 2y1"h1 + y3"h2 + 2y2"h2 = 6(y3-y2)/h2 - 6(y2-y1)/h1

y1"(6h1 – 3h1 – 2h1) + y2"(2h1 + 2h2) + y3"h2 = 6(y3-y2)/h2 - 6(y2-y1)/h1

h1y1" + 2(h1 + h2)y2" + h2y3" = 6[(y3-y2)/h2 - (y2-y1)/h1] governing equation for cubic splines.

12/17/2008 Page 4 of 6 hotvette

Generalizing, this equation results in a tri-diagonal set of linear equations (Ax = b), where x represents the
unknowns (2nd derivatives of the points), and b is the right hand side. Tri-diagonal sets of linear equations are
efficiently solved with specialized algorithms.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′′
′′

′′
′′

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+
+

−−−−−−−−−−

−

?
/)(/)(

/)(/)(
?

6

?0
)(2

)(2
)(2

0?

22111

112223

1

2

1

1122

2

3322

2211

nnnnnn

n

nnnnn

n

hyyhyy

hyyhyy

y
y

y
y

hhhh
h

hhhh
hhhh

M

M

M

M

M

M

O

O

O

If equal point spacing is used (i.e. h1 = h2 = …hn-1 = h), even more simplification can be made:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−

+−
+−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′′
′′

′′
′′

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

?
2

2
2

?

)*/(6

?0
141

1

141
141

0?

21

234

123

1

2

1

nnn

n

n yyy

yyy
yyy

hh

y
y

y
y

M

M

M

M

M

O

O

O

The first and last equations (shown as ?) represent the boundary conditions of the free ends of the spline that
must be chosen. Often, so called ‘natural’ boundary conditions are used, where the 2nd derivative is set to zero.
Natural boundary conditions result in total minimum curvature. Other boundary conditions can be used. Some
examples are:

1. Natural boundary conditions y1" = 0 yn" = 0
2. Parabolic runout y1" = y2" yn-1" = yn"
3. Zero slope see problem #2 see problem #2
4. Specified 1st derivative see problem #2 see problem #2
5. Specified 2nd derivative y1" = s1 yn" = sn

It is interesting to note that the equations for the spline segment coefficients can be represented in the following
matrix form (example for spline segment #1):

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′′
′′

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−

−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′′
′′

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

2

1

2

1

1

2
1

2
1

1

1

2

1

2

1

11

11

11

1

1

1

1

...6
266

.3..
11..

6
1

...1
63

11

.
2
1..

6
1

6
1..

y
y
y
y

h
hh

h
h

y
y
y
y

hh
hh

hh

d
c
b
a

12/17/2008 Page 5 of 6 hotvette

Example Problem #1 (function interpolation):

Let’s illustrate with a specific problem: fit two cubic splines to the function y = x3 for x = 0 to 1. Thus, x1 = 0, y1
= 0, x3 = 1, y3 = 1. We’ll pick x2 = 0.5 (thus y2 = 0.125) and use natural boundary conditions. Because the only
unknowns are the 2nd derivative at each point, we have a 3 x 3 matrix to solve. Also, since (x2-x1) = h1 = (x3-x2)
= h2 = 0.5, we can used the simplified version (Note: . means zero):

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′′
′′
′′

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0
18
0

0
75.0
0

24
0

0)125.0(21
0

24
0

2
0

)25.0/(6
1..
141
..1

123

3

2

1

yyy
y
y
y

The solution is [y1", y2", y3"]T = [0, 4.5, 0]T. Note: in this case the solution is trivial, y2" = 18/4. From this we
can calculate the coefficients of the cubic spline segments:

a1 = (y2"-y1")/6h1 b1 = y1"/2 c1 = (y2-y1)/h1 – y2"h1/6 – y1"h1/3 d1 = y1
a2 = (y3"-y2")/6h2 b2 = y2"/2 c2 = (y3-y2)/h2 – y3"h2/6 – y2"h2/3 d2 = y2

a1 = 1.5 b1 = 0 c1 = -0.125 d1 = 0
a2 = -1.5 b2 = 2.25 c2 = 1.0 d2 = 0.125

As can be seen in the plot, the cubic spline
interpolation doesn’t fit the function very
well. Wait a minute. How can two cubic
splines not fit a cubic polynomial very well?
It should be a perfect fit, especially since it
only takes one cubic spline to represent the
cubic polynomial function y = x3. The
answer is that the 2nd derivative of the spline
was forced to be zero at each free end. This
works fine at x = 0 for y = x3 because the 2nd
derivative of this function is indeed 0 at x =
0. However, it isn’t a good choice at x = 1
because the 2nd derivative of y = x3 at x = 1
is 6x = 6. If y3" is set to 6 instead of 0, the
fit is perfect. This illustrates the importance
of choosing appropriate boundary
conditions for the problem at hand.

Example Problem #2 (specify slope at end points):

As a final illustration, we will show how to enforce a slope at either end. Recall the equation of the 1st
derivative:

At x = x1:

y1' = 3a1(x1-x1)2 + 2b1(x1-x1) + c1 = 0 + 0 + c1 = c1 = (y2-y1)/h1 – y2"h1/6 – y1"h1/3
(2h1)y1" + (h1)y2" = 6[(y2-y1)/h1 - y1']

12/17/2008 Page 6 of 6 hotvette

At x = x3:

y3' = 3a2(x3-x2)2 + 2b2(x3-x2) + c2 = 3a2h2
2 + 2b2h2 + c2

y3' = 3h2
2(y3"-y2")/6h2 + 2h2y2"/2 + (y3-y2)/h2 – y3"h2/6 – y2"h2/3

y3' = 3h2(y3"-y2")/6 + h2y2" + (y3-y2)/h2 – y3"h2/6 – y2"h2/3
h2y3"/2 - h2y2"/2 + h2y2" – y3"h2/6 – y2"h2/3 = y3' - (y3-y2)/h2

3h2y3" - 3h2y2" + 6h2y2" – y3"h2 – 2y2"h2 = 6(y3' - (y3-y2)/h2)
y3"(3h2 – h2) - y2"(6h2 – 3h2 – 2h2) = 6(y3' - (y3-y2)/h2)
(h2)y2" + (2h2)y3" = 6[y3' - (y3-y2)/h2]

The resulting matrix equation is:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−′
−−−

′−−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′′
′′
′′

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

2233

112223

1112

3

2

1

22

2211

11

/)(
/)(/)(

/)(
6

2.
)(2

.2

hyyy
hyyhyy

yhyy

y
y
y

hh
hhhh

hh

Using the simplified version (since h1 = h2 = h = 0.5), and setting the 1st derivatives to zero at both ends (i.e.
horizontal slope), the result is:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
+−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
+−
−−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′′
′′
′′

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

21
18
3

875.0
75.0

125.0
24

)125.01(0
0)125.0(21

0125.0
24

)(0
2

0
)25.0/(6

21.
141
.12

23

123

12

3

2

1

yy
yyy

yy

y
y
y

The solution is [y1", y2", y3"]T = [-3, 9, -15]T, from
which we can calculate the spline segment coefficients
and plot the result.

Conclusion:

We have demonstrated a computationally efficient
method of formulating cubic splines to interpolate a
given set of points and have shown how to implement
various free end boundary conditions.

Discussion:

The formulation described here is by no means the
only one - there are other formulations of cubic
splines. One possibility is to set up the matrix

equations to directly calculate the spline segment coefficients, but it requires a matrix of dimension 4*(n-1),
which is much more computationally intensive than the method shown here. If it is desired to not choose the
free end boundary conditions, the splines on either end can be fit to the three points instead of two, or the
method illustrated here can be used with the boundary conditions determined by fitting splines to four points on
either end. These are just a few of the possible techniques for cubic spline interpolation. Lastly, it is worth
noting that by defining t = x-x0, the spline equations for example problems #1 and #2 can be expressed as:

Spline #1: y = a1t3 + b1t2 + c1t + d1 0 ≤ t ≤ (x2-x1) or 0 ≤ t ≤ h1
Spline #2: y = a2t3 + b2t2 + c2t + d2 0 ≤ t ≤ (x3-x2) or 0 ≤ t ≤ h2

