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Cubic Spline Tutorial 
 
Cubic splines are a popular choice for curve fitting because of ease of data interpolation, integration, 
differentiation, and they are normally very smooth.  This tutorial will describe a computationally efficient 
method of constructing joined cubic splines through known data points.  As background and motivation, we will 
begin with a discussion of the basic cubic polynomial: 
 
y = ax3 + bx2 + cx + d   where x is the independent variable and a, b, c, d are real numbers 
 
OK, what’s there to know?  It was most likely studied in pre-University education, has three roots (real and/or 
imaginary), the 1st derivative is a quadratic function, the 2nd derivative is a linear function, and it can be fit to 
four points.  Let’s dig a little deeper.  The general cubic polynomial has four parameters or coefficients that 
completely define the shape of the curve.  Alternatively, we can consider a cubic polynomial as having four 
constraints or degrees of freedom in physical terms (i.e. points and derivatives) that determine the four 

parameters.  The constraints can be four points, which means the equation can be 
represented in the matrix form on the left.  The solution to the matrix equation is 
the four polynomial coefficients.  However, there are other possibilities.  The 
four constraints can be three points plus a 1st or 2nd derivative at any arbitrary 
point.  Or, the constraints can be two points plus two derivatives, which is 
actually the basis for cubic spline interpolation.   

 
Let’s say we wish to represent a cubic equation as two points (x1, y1), (x2, y2) 
plus first derivatives at those points (y1', y2').  How would that be done?  Well, 
let’s first take the derivative of the cubic equation, which is y' = 3ax2 + 2bx + 
c. Thus, y1' = 3ax1

2 + 2bx1 + c and y2' = 3ax2
2 + 2bx2 + c.  The matrix equation 

defining the associated cubic polynomial is on the right.  OK.  How about two 
points plus 2nd derivatives at the points?  In that case, the equation of the 2nd 
derivative is needed, which is y" = 6ax + 2b.  Thus, y1" = 6ax1 + 2b and y2" = 
6ax2 + 2b.  The matrix equation defining the 
associated cubic polynomial is on the left.  
How about two points plus 1st and 2nd 
derivatives at the first point?  The matrix 

equation for that is on the right.  As can be seen, there are multiple ways to 
formulate a cubic polynomial by specifying points and derivatives. 
 
To illustrate, choose p1 = (0, 0) and p2 = (1, 1).  The plots below indicate the result of using various boundary 
conditions at the end points to define the cubic polynomial. 
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Note the last plot (on the right).  It represents the equation y = x3.  We know this because for this equation, y" = 
6x.  Therefore y(0)" = 6(0) = 0 and y(1)" = 6(1) = 6, which match the constraints used to generate the plot.   
 
Alternate Cubic Polynomial formulation - before moving on, it is useful to consider the following (more 
general) form of the cubic polynomial: 
 
y = a'(x-x0)3 + b'(x-x0)2 + c'(x-x0) + d'    
 
where x0 is an arbitrary reference point for the independent variable.  The superscript (i.e. ') on a, b, c, d is used 
to distinguish the coefficients from the previous case where xn is used instead of (x-x0)n.  This form of a cubic 
polynomial is just as valid as the previous version and is convenient in cubic spline interpolation because if x0 is 
chosen as the value of the independent variable at the beginning of the spline segment, the quantity (x-x0) 
begins at zero for each segment and the result is a consistent mathematical treatment for all segments.  Also, if 
the above expression for y is expanded and terms collected, it is easy to show that: 
 
a = a'   b = b' – 3a'x0  c = c' + 3a'x0

2 – 2b'x0   d = d' – c'x0 + b'x0
2 – a'x0

3 
 
Clearly, if x0 is chosen as 0, the coefficients (and equations) are identical.  As a simple example, consider the 
equation y = 2x3 + 3x2 + 4x + 5.  If x0 is chosen as 1, the following equation produces the exact same result:  y = 
2(x-1)3 + 9(x-1)2 + 16(x-1) + 14.  Checking the result for consistency: 
 

a' = 2   a = a' = 2 
b' = 9   b =  b' – 3a'x0 = 9 – 3(2)(1) = 3 
c' = 16   c = c' + 3a'x0

2 – 2b'x0 = 16 + 3(2)(1)2 – 2(9)(1) = 16 + 6 – 18 = 4 
d' = 14   d = d' – c'x0 + b'x0

2 – a'x0
3 = 14 – (16)(1) + (9)(1)2 – (2)(1)3 = 14 – 16 + 9 – 2 = 5 

 
Now that we can think of cubic polynomials in terms of points and derivatives, let’s 
connect two together.  Why do that?  The main reason is to have a smooth curve that 
goes through (i.e. interpolates) a given set of points.  Of course, it is possible to 
derive a single polynomial of degree (n-1) to fit n points, but the end result is often 
not satisfactory.  A good example is the function y = x1/3 for x = 0 to 1.  Picking four 
points x = (0, 0.2, 0.6, 1), the resulting cubic polynomial can be seen to wiggle too 
much to represent the desired function very well.  This is often the case.  Wait - can’t 
the 1st or 2nd derivative be specified to force a better fit?  Unfortunately, the answer 
is no.  The reason is that all four constraints were used up by requiring the curve to 

interpolate four points.  Remember, only four things (points, derivatives) can be specified.   
 
Continuity – the concept of continuity is important in spline interpolation.  If two polynomials are connected 
together (end point of the 1st is the beginning point of the 2nd) but no other conditions are specified, the two 
equations (or splines) are said to have C0 continuity, or zero derivative continuity.  Though that can make some 
interesting plots, it doesn’t result in a very smooth curve through the points.  Additionally, if the 1st derivatives 
at the connection points are forced to be equal, the curve is said to have C1 (i.e. 1st derivative) continuity.  That 

makes a smoother curve, but 
an even smoother one can be 
obtained if C2 continuity (i.e. 
2nd derivative) is also 
enforced.  The traditional 
implementation of cubic 
splines for the purpose of 
interpolating points uses C0, 
C1, and C2 continuity.   
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Development of Spline Equations 
 
Consider the problem of constructing two cubic splines to fit three data points p1 = (x1, y1), p2 = (x2, y2), p3 = (x3, 
y3).  Refer to the last plot on the right, above.  This is the simplest case of cubic spline interpolation that will 
illustrate the methods used in more normal cases where several points are present.  The key characteristics of 
cubic spline interpolation are: 
 
1.  Curve passes through all specified data points (C0 continuity) 
2.  1st derivative continuity (C1) at interior points 
3.  2nd derivative continuity (C2) at interior points 
4.  Boundary conditions are specified at the free ends 
 
Begin with the equations of the two splines (using the spline starting point for x0): 
 
spline #1  (x1 ≤ x ≤ x2)      spline #2  (x2 ≤ x ≤ x3)  
y = a1(x-x1)3 + b1(x-x1)2 + c1(x-x1) + d1   y = a2(x-x2)3 + b2(x-x2)2 + c2(x-x2) + d2 
y' = 3a1(x-x1)2 + 2b1(x-x1) + c1     y' = 3a2(x-x2)2 + 2b2(x-x2) + c2 
y" = 6a1(x-x1) + 2b1      y" = 6a2(x-x2) + 2b2 
 
For now, the focus will be on spline #1.  Starting with the 2nd derivative, impose the compatibility constraints 
that y" = y1" at x = x1 and y" = y2" at x = x2.  Defining x2-x1 as h1: 
 

y1" = 6a1(x1-x1) + 2b1 = 0 + 2b1 = 2b1     b1 =  y1"/2 
y2" = 6a1(x2-x1) + 2b1 = 6a1h1 + y1"     a1 =  (y2"-y1")/6h1 
 
This results in the following equation for the 2nd derivative: 
 
y" = (x-x1)(y2"-y1")/(x2-x1) + y1"  
 
which can be verified to be correct (i.e. y" = y1" at x = x1 and y" = y2" at x = x2).  Next, apply the conditions that 
the spline must pass though the points, in other words y1 = f(x1) and y2 = f(x2): 
 

y1 = a1(x1-x1)3 + b1(x1-x1)2 + c1(x1-x1) + d1 = 0 + 0 + 0 + d1   d1 = y1 
 

y2 = (x2-x1)3(y2"-y1")/6h1 + y1"(x2-x1)2/2 + c1(x2-x1) + y1  
y2 = h1

3(y2"-y1")/6h1 + y1"h1
2/2 + c1h1 + y1 

y2 = h1
2(y2"-y1")/6 + y1"h1

2/2 + c1h1 + y1 

y2-y1 = y2"h1
2/6 - y1"h1

2/6 + y1"h1
2/2 + c1h1 

(y2-y1)/h1 = y2"h1/6 - y1"h1/6 + y1"h1/2 + c1  
(y2-y1)/h1 = y2"h1/6 - y1"h1/6 + 3y1"h1/6 + c1  
(y2-y1)/h1 = y2"h1/6 + y1"h1/3 + c1     c1 =  (y2-y1)/h1 – y2"h1/6 - y1"h1/3 
 

Finally, impose the compatibility condition that y2' in spline #1 must equal y2' in spline #2: 
 

3a1(x2-x1)2 + 2b1(x2-x1) + c1 = 3a2(x2-x2)2 + 2b2(x2-x2) + c2 
3a1h1

2 + 2b1h1 + c1 = c2 
h1(y2"-y1")/2 + y1"h1 + (y2-y1)/h1 - y2"h1/6 - y1"h1/3 = (y3-y2)/h2 – y3"h2/6 – y2"h2/3 
h1(y2"-y1")/2 + y1"h1 - y2"h1/6 - y1"h1/3 + y3"h2/6 + y2"h2/3 = (y3-y2)/h2 - (y2-y1)/h1 

3h1(y2"-y1") + 6y1"h1 - y2"h1 - 2y1"h1 + y3"h2 + 2y2"h2 = 6(y3-y2)/h2 - 6(y2-y1)/h1 

3h1y2" – 3h1y1" + 6y1"h1 - y2"h1 - 2y1"h1 + y3"h2 + 2y2"h2 = 6(y3-y2)/h2 - 6(y2-y1)/h1 

y1"(6h1 – 3h1 – 2h1) + y2"(2h1 + 2h2) + y3"h2 = 6(y3-y2)/h2 - 6(y2-y1)/h1 
 

h1y1" + 2(h1 + h2)y2" + h2y3" = 6[(y3-y2)/h2 - (y2-y1)/h1]  governing equation for cubic splines. 
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Generalizing, this equation results in a tri-diagonal set of linear equations (Ax = b), where x represents the 
unknowns (2nd derivatives of the points), and b is the right hand side.  Tri-diagonal sets of linear equations are 
efficiently solved with specialized algorithms. 
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If equal point spacing is used (i.e. h1 = h2 = …hn-1 = h), even more simplification can be made: 
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The first and last equations (shown as ?) represent the boundary conditions of the free ends of the spline that 
must be chosen.  Often, so called ‘natural’ boundary conditions are used, where the 2nd derivative is set to zero.  
Natural boundary conditions result in total minimum curvature.  Other boundary conditions can be used.  Some 
examples are: 
 
1.  Natural boundary conditions  y1" = 0     yn" = 0   
2.  Parabolic runout     y1" = y2"    yn-1" = yn"   
3.  Zero slope      see problem #2 see problem #2     
4.  Specified 1st derivative   see problem #2 see problem #2 
5.  Specified 2nd derivative   y1" = s1   yn" = sn 
 
It is interesting to note that the equations for the spline segment coefficients can be represented in the following 
matrix form (example for spline segment #1): 
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Example Problem #1 (function interpolation): 
 
Let’s illustrate with a specific problem: fit two cubic splines to the function y = x3 for x = 0 to 1.  Thus, x1 = 0, y1 
= 0, x3 = 1, y3 = 1.  We’ll pick x2 = 0.5 (thus y2 = 0.125) and use natural boundary conditions.  Because the only 
unknowns are the 2nd derivative at each point, we have a 3 x 3 matrix to solve.  Also, since (x2-x1) = h1 = (x3-x2) 
= h2 = 0.5, we can used the simplified version (Note: . means zero): 
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The solution is [y1", y2", y3"]T = [0, 4.5, 0]T.  Note: in this case the solution is trivial, y2" = 18/4.  From this we 
can calculate the coefficients of the cubic spline segments: 
 
a1 =  (y2"-y1")/6h1 b1 =  y1"/2  c1 =  (y2-y1)/h1 – y2"h1/6 – y1"h1/3  d1 = y1 
a2 =  (y3"-y2")/6h2 b2 =  y2"/2  c2 =  (y3-y2)/h2 – y3"h2/6 – y2"h2/3  d2 = y2 
 
a1 =  1.5  b1 =  0   c1 =  -0.125     d1 = 0 
a2 =  -1.5  b2 =  2.25  c2 =  1.0     d2 = 0.125 

 
As can be seen in the plot, the cubic spline 
interpolation doesn’t fit the function very 
well.  Wait a minute.  How can two cubic 
splines not fit a cubic polynomial very well?  
It should be a perfect fit, especially since it 
only takes one cubic spline to represent the 
cubic polynomial function y = x3.  The 
answer is that the 2nd derivative of the spline 
was forced to be zero at each free end.  This 
works fine at x = 0 for y = x3 because the 2nd 
derivative of this function is indeed 0 at x = 
0.  However, it isn’t a good choice at x = 1 
because the 2nd derivative of y = x3 at x = 1 
is 6x = 6.  If y3" is set to 6 instead of 0, the 
fit is perfect.  This illustrates the importance 
of choosing appropriate boundary 
conditions for the problem at hand.   
 
 

Example Problem #2 (specify slope at end points): 
 
As a final illustration, we will show how to enforce a slope at either end.  Recall the equation of the 1st 
derivative: 
 
At x = x1:  
 

y1' = 3a1(x1-x1)2 + 2b1(x1-x1) + c1 = 0 + 0 + c1 = c1 = (y2-y1)/h1 – y2"h1/6 – y1"h1/3 
(2h1)y1" + (h1)y2" =  6[(y2-y1)/h1 - y1'] 
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At x = x3:  
 

y3' = 3a2(x3-x2)2 + 2b2(x3-x2) + c2 =  3a2h2
2 + 2b2h2 + c2 

y3' = 3h2
2(y3"-y2")/6h2 + 2h2y2"/2 + (y3-y2)/h2 – y3"h2/6 – y2"h2/3 

y3' = 3h2(y3"-y2")/6 + h2y2" + (y3-y2)/h2 – y3"h2/6 – y2"h2/3 
h2y3"/2 - h2y2"/2 + h2y2" – y3"h2/6 – y2"h2/3 = y3' - (y3-y2)/h2 

3h2y3" - 3h2y2" + 6h2y2" – y3"h2 – 2y2"h2 = 6(y3' - (y3-y2)/h2) 
y3"(3h2 – h2) - y2"(6h2 – 3h2 – 2h2) = 6(y3' - (y3-y2)/h2) 
(h2)y2" + (2h2)y3" = 6[y3' - (y3-y2)/h2] 
 
The resulting matrix equation is: 
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Using the simplified version (since h1 = h2 = h = 0.5), and setting the 1st derivatives to zero at both ends (i.e. 
horizontal slope), the result is: 
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The solution is [y1", y2", y3"]T  = [-3, 9, -15]T, from 
which we can calculate the spline segment coefficients 
and plot the result. 
 
Conclusion: 
 
We have demonstrated a computationally efficient 
method of formulating cubic splines to interpolate a 
given set of points and have shown how to implement 
various free end boundary conditions.  
 
Discussion: 
 
The formulation described here is by no means the 
only one - there are other formulations of cubic 
splines.  One possibility is to set up the matrix 

equations to directly calculate the spline segment coefficients, but it requires a matrix of dimension 4*(n-1), 
which is much more computationally intensive than the method shown here.  If it is desired to not choose the 
free end boundary conditions, the splines on either end can be fit to the three points instead of two, or the 
method illustrated here can be used with the boundary conditions determined by fitting splines to four points on 
either end.  These are just a few of the possible techniques for cubic spline interpolation.  Lastly, it is worth 
noting that by defining t = x-x0, the spline equations for example problems #1 and #2 can be expressed as: 
 
Spline #1: y = a1t3 + b1t2 + c1t + d1 0 ≤ t ≤ (x2-x1)  or  0 ≤ t ≤ h1 
Spline #2: y = a2t3 + b2t2 + c2t + d2 0 ≤ t ≤ (x3-x2)  or  0 ≤ t ≤ h2 
 


