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1 The density matrix.

The density operator of a pure state |ψ〉 is given (by definition) by:

ρψ = |ψ〉〈ψ| (1)

In a specific basis, this density operator is represented by a matrix, the density
matrix. In the case that |ψ〉 is a basis vector |ei〉, the density matrix ρ reduces
to a diagonal matrix with only one diagonal element different from zero, namely
the i-th element. In the more general case:

|ψ〉 =
N∑

i=1

ψi|ei〉 (2)

the associated density matrix takes on the form:

ρi,j = ψi(ψj)∗ (3)

In standard quantum theory, when a measurement is performed on a state
|ψ〉, corresponding to an operator A, with eigenbasis |ai〉, then one should write
ψ〉 in this eigenbasis:

|ψ >= αi|ai〉 (4)

and after measurement, the system is in the state |ai〉 with probability |αi|2. The
fact that the state of the system changed stochastically to one of the eigenstates
is called the projection postulate, and the fact that the probability associated
with such a projection is given by |αi|2 is called the Born (probability) rule.

There’s another way of seeing what happened during this measurement
process. One can say that the pure state |ψ〉 of which we knew exactly the
quantum state, is now a statistical mixture of states |ai〉: we lost knowledge of
the pure state of the system (and that knowledge is present in the data of the
outcome of the measurement).

Now, a density matrix can be used to describe statistical mixtures in the
following way: if a statistical mixture is made up of (pure)states |yi〉 with weight
ui in a mixture, then the density matrix of the mixture is defined as:

ρmix =
M∑

k=1

ukρyk
(5)
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with ρyk
the density matrix of the pure state |yk〉.

Up to now, density matrices only seem to be things that we defined, without
any specific meaning. But the meaning of a density matrix comes about when
we look at the expectation values of measurements. Consider an (hermitean)
operator A describing a measurement. The expectation value of the measured
value on a pure state |ψ〉 is given by:

〈A〉 =
N∑

i=1

|αi|2ai = 〈ψ|A|ψ〉 (6)

This can also be calculated as (trace is invariant under cyclic rotation, and trace
of a number is the number):

〈A〉 = Tr (〈ψ|A|ψ〉) = Tr (|ψ〉〈ψ|A) = Tr (ρψA) (7)

Now, it is important to realize that ALL experimental quantities (including
probabilistic frequencies) are expectation values of some or other operator A.
Indeed, the probability to satisfy a certain property is simply the expectation
value of the projector operator Pi, which projects upon the space of states which
have the required property. Pi is a hermitean operator, and can serve as the
measurement operator for the said probability.

So this means that the density matrix ρ describes — in the case of a pure
state — completely all possible experimental quantities one can extract from
an experiment, because it is given by Tr(ρA). Now, what about mixtures ?
The expectation value of a mixture is of course the weighted composition of the
expectation values of the individual members of the mixture:

〈A〉 =
M∑

k=1

uk〈A〉yk
(8)

where 〈A〉yk
is the expectation value of the operator A for the pure state (mem-

ber of the mixture) |yk〉 with weight uk. Filling this in, we find:

〈A〉 =
M∑

k=1

ukTr (ρyk
A) = Tr

(
M∑

k=1

ukρyk
A

)
= Tr (ρmixA) (9)

So, we see that with our definition of ρmix, the formula for the expectation
value also applies in the case of a mixture! Moreover, as the Trace notation
is basis-independent, we can now consider the density matrix more as a basis-
independent density operator.

And now we come to a full circle: we saw that the measurement process
changed the pure state |ψ〉 into a mixture of pure states. This can be described
by taking the density matrix of the pure state, ρ|ψ〉 and transforming it into the
density matrix of the mixture. This goes as follows: write the density matrix
out in the eigenbasis of the measurement that is to be performed, and keep the
elements on the diagonal (which are nothing else but the |αi|2), while putting
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all the off-diagonal elements to 0. Clearly, this procedure is dependent on the
basis in which it is performed! It should be performed in the eigenbasis of the
measurement operator A.

2 The reduced density matrix

Consider next a system containing two clearly defined subsystems (for instance,
two spatially separated particles). The state space of the first subsystem, H1,
is spanned by a basis |ei〉, while the state space of the second subsystem, H2, is
spanned by a basis |fj〉. The state space of the entire system is then the tensor
product of both: H = H1 ⊗H2, which is spanned by the basis |ei〉|fj〉.

Now, consider a general (pure) state:

|ψ〉 =
∑

ij

aij |ei〉|fj〉 (10)

and let us imagine that we want to find the expectation value of an operator
A1 who is in fact A1 ⊗ 1, as A1 acts only on the first system. Let us suppose
that |ei〉 is an eigenbasis of A1 ; we can complete it with just any basis in H2

because any basis is an eigenbasis of 1.
As such, the expectation value of A1 for this state becomes:

〈A1〉 =
∑

ij

|aij |2αi (11)

The overall density matrix of this state is given by:

ρij,kl = aij(akl)∗ (12)

Let us define the reduced density matrix ρ1:

(ρ1)ik =
∑

j

aij(akj)∗ (13)

Note that this sum over j is the ’partial trace’ over the H2 quantities, for a
given i and k. Indeed, for a fixed i and k, you have a small matrix over j and l
in the total density matrix, and what we have written here is the trace of this
small matrix.

We have that:

Tr(ρ1A1) =
∑

k

∑

l

(ρ1)klAlk =
∑

k

∑

j

akj(akj)∗αk = 〈A1〉 (14)

So all the expectation values of an operator A1 (acting only on H1) are given
by:

〈A1〉 = Tr (ρ1A1) (15)

It is not difficult (though somewhat cumbersome) to show that these ex-
pressions are independent of basis. The ρ1 matrix is of course unchanged when
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we change basis in H2 (without changing basis in H1), because the (partial)
trace operator does not depend upon the choice of basis. But the ρ1 operator
is also a true operator, in that its expression as a function of basis components
transforms correctly under a change of basis in H1. This means that we can
write:

ρ1 = TrH2 (ρ) (16)

and this is a completely basis-independent expression.

3 No signalling in EPR situations.

Let us now consider a typical EPR situation, where we have an entangled state
|ψ〉 as given in the preceding section, and Alice has access to system 1, while Bob
has access to system 2. Let us have Bob try to send a message to Alice. Now,
in order to do so, Bob can make a choice between applying measurement A2 or
measurement B2 to system 2, while Alice will perform measurement A1. If Alice
can observe any difference in the expectation value from A1 according to whether
Bob choose to perform A2 or B2, then Alice will have received information from
Bob through the entangled pair. If not, well, that means that there is no way
for Bob to signal anything to Alice, because ANY communication channel can
be modelled this way.

Because Alice will measure an expectation value, we will try to find out
what happens to ρ1 when Bob does his thing, because Alice’s outcome will be:
〈A1〉 = Tr (ρ1A1).

Now, first let us consider that Bob does nothing. We have that

ρ1 = TrH2 (ρ) (17)

with ρ the density matrix of the pure state |ψ〉. Now, let us assume that Bob
performs measurement A2. We take it that A2 has as eigenbasis |fj〉. The
measurement has changed the pure state into the following mixture: we have:

|ψj〉 =
∑

i

aij |ei〉|fj〉 (18)

with weight: ∑

i

|aij |2 (19)

Only, we don’t have to introduce explicitly this weight, as it is identical to
the normalization factor of |ψj〉 that we didn’t introduce. This means that ρ
becomes:

ρa =
∑

j

|ψj〉〈ψj | = akj |ek〉|fj〉a∗lj〈el|〈fj | (20)

We see that this density matrix after the measurement of Bob has a special
form: only terms in |fj〉〈fj | are present (the off-diagonal terms in H2 have been
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eliminated, as should be). So we find now as matrix elements:

(ρa)ij,kl = aij(akl)∗δjl (21)

These are the same matrix elements as ρ before the measurement, except
that all the elements with j 6= l have been set to 0.

If we now take the partial trace in ρ, in each H2 submatrix, we use only the
elements on the diagonal:

ρ1,a =
∑

j

aij(akj)∗ (22)

But these elements have not been changed! So we see that ρ1,a = ρ1. The
reduced density matrix ρ1 is not influenced whether Bob performed, or didn’t
perform, a measurement A2. The reader can object that we had A2 having a
special condition, namely that its eigenvectors where the chosen basis |fj〉 of
H2. What happens when Bob performs measurement B2 ? It should be clear
that this doesn’t change anything. We are free to change basis in H2, this
doesn’t affect the values of ρ1. One can try to work this out in detail, but the
mathematical reason is that each submatrix for a given i and k is a matrix in
H2, and that a change of basis in H2 will transform this submatrix. The trace,
however, is invariant under a change of basis, so the same value will be found for
the same i and k. In other words, ρ1 will consist of exactly the same elements,
whether we work it out in the basis |fj〉 of H2, or another basis |gj〉.

As a conclusion, we can say that Alice will not be able to determine whether
or not Bob performs a measurement, and what measurement he performs, con-
cerning ALL expectation values she can measure locally.
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