
7) If 0 1ε< < , construct an open set [ ]0,1E ⊂  which is dense in 

[ ]0,1 , such that ( )m E ε= . (To say that A  is dense in B  means that 
the closure of A contains B.) Proof: Fix 0 1ε< < . Construct a 
sequence closed sets { }kC  as follows: Put [ ]0 0,1C = . To form 1Cλ+ , 

delete the open middle interval of length 3 λε −  from each complete 
segment of Cλ ; there are 12λ−  such intervals removed upon each 
iteration, since removing the middle portion of a segment the leaves 

two in its place. Define 
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set being formed by the disjoint union of opens sets, whose measures 
are ( )0 0,Cm C =  and ( ) ( ) 12
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∑ ∑∪ ; note that 

calculation may be made rigorous by applying the limiting process 
of Theorem 1.19 (d). That E  is dense in [ ]0,1  is seen by…  


