
ON MATHEMATICAL INDUCTION* 

LEON HENKIN, University of California, Berkeley 

Introduction. According to modern standards of logical rigor, each branch of 
pure mathematics must be founded in one of two ways: either its basic concepts 
must be defined in terms of the concepts of some prior branch of mathematics, 
in which case its theorems are deduced from those of the prior branch of mathe- 
matics with the aid of these definitions, or else its basic concepts are taken as 
undefined and its theorems are deduced from a set of axioms involving these 
undefined terms. 

The natural numbers, 0, 1, 2, 3, are among those mathematical entities 
about which we learn at the earliest age, and our knowledge of these numbers 
and their properties is largely of an intuitive character. Nevertheless, if we wish 
to establish a precise mathematical theory of these numbers, we cannot rely on 
unformulated intuition as the basis of the theory but must found the theory in 
one of the two ways mentioned above. Actually, both ways are possible. Starting 
with pure logic and the most elementary portions of the theory of sets as prior 
mathematical sciences, the German mathematician Frege showed how the basic 
notions of the theory of numbers can be defined in such a way as to permit a full 
development of this theory. On the other hand the Italian mathematician Peano, 
taking natural number, zero, and successor as primitive undefined concepts, 
gave a system of axioms involving these terms which were equally adequate to 
allow a full development of the theory of natural numbers. In the present paper 
we shall examine the concept of definition by mathematical induction within the 
framework of Peano's ideas. In this development we shall presuppose only logic 
and the most elementary portions of the theory of sets; however, we shall find 
that our subject is greatly illuminated by the introduction of some of the termi- 
nology of modern abstract algebra, even though we do not presuppose any of this 
algebraic material as a basis of our proofs or definitions. 

1. Models and the axioms of Peano. It will be convenient here to use the 
word model to refer to a system consisting of a set N, an element 0 of N, and a 
unary operationt S on N. A model (N, 0, S) will be called a Peano model if it 
satisfies the following three conditions (or axioms). 
PI. For all xCN, Sx#40. 
P2. For all x, yE:N, if x -y then Sx # Sy. 
P3. If G is any subset of N such that (a) OG, and (b) whenever xCG then also 

SxCG, then G=N.T 
* This article-was translated into Russian and published in Matematicheskoe Prosveshchenie, 

No. 6, 1959. This English version appears with the consent of the editors of the Soviet publication. 
t A unary operation on N is a function having N as its domain and having a range which is a 

subset of N. For any xE N, we let Sx be the element of N which is the value obtained by operating 
on x with S. 

I In the terminology of set-theory, P1 and P2 respectively express the conditions that 0 is not 
in the range of S, and that S is one-one. A subset G of N which satisfies condition (b) of P3 is said 
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If we consider the case when N* is the set of natural numbers as we know 
them intuitively, 0* is the number zero, and S* is the successor operation (i.e., 
the operation such that for any natural number x, S*x is the next following 
number), then (N*, 0*, S*) is an example of a Peano model. Of course it was this 
example which suggested consideration of the Peano axioms in the first place. 
Note, however, that there are many other Peano models, for example the sys- 
tem (N', O', S') where N' is the set of all positive even integers, O' is the number 
two, and S' is the operation of adding two. 

Condition P3 is called the axiom of mathematical induction. It will be useful 
to introduce the term induction model to refer to any model which satisfies this 
axiom. Thus we see at once that every Peano model is an induction model. But 
the converse is far from true. 

For example, let N" be a set containing a single element, let 0" be this ele- 
ment, and let S" be the only possible unary operation on N", i.e., the operation 
such that S"O" = 0". Then clearly (N", 0"f, S") is an induction model, but it is 
not a Peano model since it does not satisfy Axiom Pl. For another example let 
ao and ai be two distinct objects, and let N"' be the pair {ao, a,} (i.e., the set 
having ao and a1 as its only elements). Let S"' be the unary operation on N"' 
with constant value a1 (i.e., S"'x =a, for all xGEN"'). Then (N"', ao, S"') is an 
induction model, but it is not a Peano model since it does not satisfy Axiom P2. 

The reader may notice that the model (N", O", S") satisfies P2, while 
(N"', ao, S"') satisfies P1. It then becomes natural to ask whether there are 
induction models which satisfy neither Pl nor P2. As it happens, there are none: 
any model which satisfies P3 must also satisfy either Pl or P2. A direct proof 
of this fact, using only the laws of logic and the elements of set theory, is rather 
troublesome to find-it is a task we leave for the enterprising reader. Presently 
we shall see that after the theory of definition by mathematical induction is 
established, the result can be obtained quite simply. 

Now consider the following two statements. 

P4. If y is any element of N such that y 0 Sx for all x E N, then y = 0. 
P5. For all x C N, x % Sx. 

We recognize that each of these is true for the Peano model (N*, 0*, S*) of 
natural numbers as we know them intuitively, and in fact we can easily show 
that each one is true of all Peano models by deriving it from Axioms P1-P3. 
But there is an important difference between the two: the proof of P4 requires 

to be closed under S. If we regard (N, S) as an algebraic system, a subset G of N which is closed 
under S would be called a subalgebra of the system. Thus P3 expresses the condition that the only 
subalgebra of (N, S) which contains the element 0 is N itself. In algebraic terminology this condi- 
tion is expressed by saying that the element 0 generates the algebra (N, S). It is also possible to 
regard the system (N, 0, S) itself as an algebraic system. In that case, in order to qualify as a sub- 
algebra a subset G of N must contain 0 as well as be closed under S. Thus P3 expresses the condition 
that the only subalgebra of (N, 0, S) is N itself. Hence the system (N, 0, S) is generated by any 
one of its elements. 
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only Axiom P3, so that P4 holds for all induction models, but the proof of P5 
requires Axiom P1 as well as P3, and our example (N", 0", S") shows that P5 
does not hold for all induction models. 

2. Operations defined by mathematical induction. The statemnents P4 and 
P5 are examples of true theorems about natural numbers, but we generally 
regard their mathematical content as quite trivial. In order to develop a richer 
theory it is essential to introduce additional concepts beyond the primitive no- 
tions of number, zero, and successor; in particular, we must define such central 
concepts as additition, multiplication, exponentiation, prime number, etc. Let 
us consider addition first, and inquire how it can be defined. 

Addition is a binary operation on natural numbers; i.e., it is a function + 
which may act on any ordered pair (x, y) of natural numbers, the result of the 
action being again a natural number, x+y. Peano's idea was to define + by 
means of the pair of equations 

1.1 x+O= x, 
1.2 x+Sy =S(x+y). 

Of course on the basis of our intuitive knowledge of the operation of addition 
we recognize that these equations are true for all natural numbers x and y. But 
in what sense do the equations constitute a definition of addition? In particular, 
does the definition hold only for natural numbers, or for arbitrary Peano models 
as well? In order to get a clear answer to these questions we first consider a re- 
lated but more general problem. 

The introduction of an operation by means of the pair of equations 1.1 and 
1.2 is an example of what is called definition by mathematical induction. To de- 
scribe this concept in general terms we must consider a Peano model (N, 0, S) 
and in addition a second model (N1, 01, S1) which, however, is not required to be 
a Peano model (or even an induction model). Being given these two models we 
say that the pair of equations 

2.1 hO =O, 

2.2 h(Sy) = Si(hy), 

defines (by mathematical induction) a function h: a function which maps N 
into N1 and satisfies 2.1 and 2.2 for all yEN. Again we may raise the question: 
In what sense do these equations define a function? The answer is provided by 
the following theorem. 

THEOREM I. No matter what Peano model DI = (N, 0, S) we have, and no matter 
what model 1 = (N1, 01, S1) we start with, there exists a unique homomorphism of 
DI into 01; that is, there exists one and only one function h mapping N into N1 
which satisfies 2.1 and 2.2 for all yEN.t 

t As remarked in footnote X, pp. 323-324, a model (N, 0, S) is an induction model if and only if 
0 is a generator of the algebraic system (N, S). In algebraic terminology the content of Theorem I 

This content downloaded from 76.99.59.20 on Mon, 14 Oct 2013 12:22:08 PM
All use subject to JSTOR Terms and Conditions



326 ON MATHEMATICAL INDUCTION [April 

Before attempting to prove this theorem let us see how it applies to the case 
of 1.1 and 1.2. 

Let DI be an arbitrary Peano model (N, 0, S), and for each xeN let 91. 
be the model (N, x, S). Applying Theorem I to the models DI and 9I, we see that 
for each xEN there will be a unique function h. mapping N into itself such that 
the equations 

3.1 h0 = x, 

3.2 hx(Sy) = S(1xy), 

hold for all yEN. From the existence and uniqueness of these functions h. we 
shall show that there exists a unique binary operation of addition on (N, 0, S); 
for later purposes the reader should note that the argument by which we infer 
the existence and uniqueness of addition from the existence and uniqueness of 
the functions h. is purely set-theoretical in character, and does not depend in 
any way on Axioms P1-P3. Let f be the binary operation on N whose value 
for any x, yCN is determined by the equation 

4 fxy = (kxy). 

Using 4, 3.1, and 3.2 we see that f satisfies the equations 

5.1 fxO = x, 

5.2 fx(Sy) = S(fxy), 

for all x, yCN. Furthermore, f is the only binary operation on N with this prop- 
erty. For suppose g is any binary operation on N satisfying 

6.1 gxO = x, 

6.2 gx(Sy) = S(gxy), 

for all x, y C N. Then for each x C N let g., be the unary operation on N such that 

7 gzy = gxy 

for all yCN. From 7, 6.1, and 6.2 we infer that for any xCN the equations 

8.1 g.O = x, 

8.2 gx(Sy) = S(gxy), 

hold for all yCN. Comparing 3.1, 3.2 and 8.1, 8.2 we see that for each xCN 
we have g.,=hx, since Theorem I assures us that the function h. defined by 3.1 
and 3.2 is unique. But if gx=h. for each xCN, 4 and 7 imply that fxy=gxy 
for all x, yEN. Since f and g are binary operations on N, we see that f=g by 
the principle of extensionality. 

We have thus inferred from Theorem I that if (N, 0, S) is any Peano model, 

would be expressed by saying that in the class of all algebraic systems (N, S) the systems (N, S) 
derived from Peano models (N, 0, S) are free, and in fact are freely generated by 0. 
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there is a unique binary operation f on N satisfying 5.1 and 5.2 for all x, yEN. 
This binary operation we call addition; if we denote it by the symbol " +", we 
see that 1.1 and 1.2 are simply another way of writing 5.1 and 5.2. In this way 
the definition of addition by 1.1 and 1.2 is explained by Theorem I. 

We now take up the problem of proving this theorem. 
Suppose, then, that (N, 0, S) is any Peano model, and that (N1, 0i, S1) is 

an arbitrary model. We wish to show the existence of a unique function h map- 
ping N into N1 which satisfies 2.1 and 2.2 for all yEzN. Putting aside for a 
moment the question of uniqueness, an argument to show the existence of such 
a function h is sometimes given along the following lines. 

Clearly (the argument goes), h is defined for 0, since hO = 01 by 2.1. Further- 
more, if h is defined for an element y of N then h is also defined for Sy since 
h (Sy) ==Si((hy) by 2.2. Thus if we let G be the set of all those y lN for which h 
is defined, we see that (a) OEG, and (b) whenever yeG then also SyeG. 
Applying Axiom P3 we conclude that G = N. Thus h is defined for all yeN. 

At first sight this argument may seem convincing, but a moment's reflection 
will suffice to raise doubts. For in this argument we refer to a certain function h. 
But what is h? Apparently it is a function which satisfies 2.1 and 2.2. Recall, 
however, that the argument is designed to establish the existence of such a 
function; clearly, then, it is incorrect to assume in the course of the argument 
that we have such a function. 

This objection may be thought at first to be simply a verbal matter which 
can be avoided by some minor rewording of the argument. Actually, however, 
there is something fundamentally wrong with the argument-for the only prop- 
erty of the model (N, 0, S) which it employs is Axiom P3! If this argument were 
essentially correct, it would follow that for any induction model (N, 0, S), and 
an arbitrary model (N1, 01, Si), there exists a function h, mapping N into N1, 
which satisfies 2.1 and 2.2 for all yEN. But this statement is simply false, as 
the following example shows. 

Let s"= (N", ao, S") be the induction model considered in Section 1, in 
which N" is the pair of two distinct objects ao and a1, and S"x =-a for all 
xC N". Let T be the unary operation on N" such that Tao = a, and Tal = ao, and 
let 91i be the model (N", ao, T). Now if Theorem I could be applied to the induc- 
tion model 9f" and the model 9Z1, there would exist a mapping h of N" into 
itself such that 

9.1 hao = ao, 

9.2 h(S"y) = T(hy), 

for all yEN". From 9.2 we compute that h(al) =h(S"ao) = T(hao), and so by 9.1, 
hI(a,) = Tao =a,. On the other hand, hI(a,) = hI(S"al) = T(hai) by another applica- 
tion of 9.2, and since we have already computed ha, =a, this shows that h(a,) 
= Ta1 =a0. From h(al) =ao and h(al) =a, we get a0=al, contrary to our hypoth- 
esis that ao and a, are distinct. This contradiction shows that Theorem I does 
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not apply to the induction model al", and shows a fortiori that any proof of this 
theorem must employ either Axiom P1 or P2, as well as P3; actually, as we shall 
see later, all three axioms must be employed. We may phrase this observation 
by saying that the axiom of mathematical induction does not itself justify 
definitions by mathematical induction. t 

Proof of Theorem I. Let 91= (N, 0, S) be any Peano model and let DI1 
=(N1, 0i, S1) be an arbitrary model. A subset H of N is called a segment if 
OEzH and if, whenever SxCH then also xEzH. By a partial function let us 
mean a function j whose domain is some segment H, which has values in N1, 
and which is such that 

10.1 jO = o1, 
10.2 j(Sx) = Sl(jx) 

for all x such that SxGH. 

LEMMA 1. Every element of N is in the domain of some partial function. 

Proof. Let G be the set of those elements of N which are in the domain of 
some partial function. It is clear that the set {0 } whose only element is 0 is a 
segment, since there is no x such that SxE { 0 } according to Axiom P1. Further- 
more, the function j whose domain is 0 } and whose value jO is 01 is a partial 
function for the same reason. Hence OCG. 

Now suppose that y is any element of G, and let j be a partial function hav- 
ing y in its domain. Let H be the domain of j. If SyEzH then Sy too is in G; 
so let us consider the case where Sy EEH. In this case let H' be the subset of N 
obtained from H by adding Sy as an additional element, and let j' be the func- 
tion whose domain is H' and whose values are given by the following rule: if 
xCH then j'x =jx, and if x = Sy then j'x = Si(jy). We shall show below that j' 
is a partial function, and hence that SyEG in the case that SyEEH (as well as 
in the contrary case considered above). Since G contains 0 and is closed under 
S, it will follow by Axiom P3 that G = N. By definition of G the lemma will there- 
fore be proved. 

Thus to complete the proof of the lemma it remains only to show that j' 
is a partial function. To this end, consider first the domain H' of j'; we have 
H' =HU { SY} . Since H is the domain of a partial function it is a segment, and 
hence 0=H, so that 0EH'. Further, if x is any element of N such that SxCH', 
then also xeH' as we see by cases: if SxEH then xCH because H is a segment, 
and if Sx =Sy then x = y by Axiom P2 so that x CH again (since we know 
yCH). These considerations show that H' is a segment. Now j'O =jO = 01, and 
j'(Sx) ==Si(j'x) whenever Sx EH'; the last equation is again established by 
cases, for if SxeH then also xeH so that j'(Sx) =j(Sx) and j'x =jx, while if 
Sx = Sy then x = y and so j'(Sy) = Si(j'y). Since j' has a domain which is a seg- 

t This fact was clearly brought out by Dedekind in his famous book: Was sind und was sollen 
die Zahlen? (See "Bemerkung," paragraph 130, section 9.) 
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ment, and since it satisfies 10.1 and 10.2, it is a partial function. This completes 
the proof of Lemma 1. 

LEMMA 2. If ji and j2 are partialfunctions and x is in the domain of each, then 
jlX =j2X. 

Proof. Let G be the set of those elements x of N such that jlx =j2x whenever 
ji and j2 are partial functions each of which has x in its domain. Clearly OG, 
since jO =01 for any partial function j. Now suppose x is an arbitrary element of 
G, and let jl and J2 be any partial functions each of which contains Sx in its 
domain. Then j (Sx) = S (jlx) and j2(Sx) = S (j2x); but since x E G, jlx =j2x and 
hence j1(Sx) =j2(Sx). Therefore SxEG. Since 0EG and G is closed under S, it 
follows by Axiom P3 that G= N. Referring to the definition of G we see that 
Lemma 2 is proved. 

By combining Lemmas 1 and 2 we see that for any xCN there is one and 
only one zGN such that z =jx for some partial function j. We let h be the func- 
tion, with domain N, such that for any xEN the value hx is this unique zEN. 
We claim that this function h satisfies 2.1 and 2.2 for all yEN, and that it is 
the only function with domain N which has this property. 

Clearly hO = 01 since jO = 01 for any partial function j. Furthermore, for any 
yEN there is a partial function j such that Sy is in the domain of j (by Lemma 
1), whence we see that h(Sy) ==j(Sy) =Si(jy) =Si(hy), so that h satisfies 2.1 and 
2.2 as claimed. Now if hi is any other function with domain N which satisfies 
2. 1 and 2.2 for all yEN, then hi = h. The reason is that N is clearly a segment, so 
that h and hi are both partial functions, whence by Lemma 2 we have hx = hlx 
for all x EN, and therefore h =hi by the principle of extensionality. This com- 
pletes the proof of Theorem I. 

This proof is rather more involved than the simple argument sketched at 
first, but it has the advantage of being correct. The reader will notice that all 
of the Axioms P1-P3 were employed in the proof (in connection with Lemma 1). 

The construction of h by means of partial functions, as described in this 
proof, is not the only means we know of obtaining this function. There is another 
method of constructing h which leads to a different proof of Theorem I. We will 
outline this other process of construction briefly, leaving the reader to supply 
details of the proof. 

Being given a Peano model (N, 0, S) and an arbitrary model (N1, 01, S1), 
we consider subsets A of the product set NX N1, i.e., sets A all of whose elements 
are ordered pairs (x, y) where xEN and yEN1. We call such a set A regular if 
(0, 01)EA and if, whenever (x, y)EA then also (Sx, Sly)EA. Clearly there are 
regular sets, for example NX N1 itself. It is easy to see that the intersection A * 
of all regular sets A is itself regular. Now using Axioms P1-P3, which hold for 
(N, 0, S), we can show that for every xEN there is one and only one yEN1 
such that (x, y) EA *: this is the part of the proof where the reader will have to 
supply some detail. Having shown this, we define h to be the function with do- 
main N such that for any xEN, hx is the unique yEEN1 for which (x, y)EA*. 
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From the fact that A * is regular it then easily follows that h is a homomorphism 
of N into N1, as required by Theorem I. Finally, to show the uniqueness of h, 
we consider any homomorphism h1 of N into N1. Letting B be the subset of 
N X N1 such that (x, y) EB if and only if y = h1x, we easily see that B is regular 
and hence A * CB. From the fact that for each x CN there is only one y E N1 such 
that (x, y)-B, we then infer that A * =B; and from this we easily conclude that 
hi= h. This completes our outline of the second proof of Theorem I. 

3. Addition and multiplication in arbitrary induction models. As we have 
previously noted, we can infer from Theorem I the existence, in every Peano 
model, of a unique operation of addition (i.e., a binary operation f which 
satisfies 5.1 and 5.2 for all x, yEN). Actually, something more is true. 

THEOREM II. In every induction model there is a unique operation of addition. 

We cannot hope to prove this theorem by means of Theorem I, for the latter 
is not true of all induction models, as we have seen in Section 2. Instead, we 
proceed by means of the following lemma. 

LEMMA. If (N, 0, S) is any induction model, then for every xEN there is a 
unique unary operation h., on N such that 3.1 and 3.2 hold for all y EN. 

Proof. We first observe that for any xEN there can be at most one operation 
h. satisfying 3.1 and 3.2. For suppose h. and h ' are both operations which satisfy 
these equations, and let G be the subset of N such that yEG if and only if 
h,y=h'y. Clearly OE-G, since h0O=x=h'O. Also G is closed under S, for if 
yEG (so that h,y = h'y), we see that hQ(Sy) = S(hxy) = S(h'y) = h'(Sy) whence 
SyEG. Since Axiom P3 holds for (N, 0, S) we infer that G = N. By the principle 
of extensionality it follows that h = h '. 

Now let H be the subset of N consisting of those elements x for which an 
operation h. exists. Taking ho to be the identity operation on N (such that 
hoy =y for all y E N), we see that hoO = 0 (thus satisfying 3.1), and for any y EN, 
ho(Sy) = Sy = S(hoy) (thus satisfying 3.2). Hence OGH. Furthermore, H is closed 
under S. For suppose xEH, so that an operation h. exists. Let hsx be the opera- 
tion on N such that hsy =S(hxy) for all y EN. We see that hsxO = S(hxO) = Sx 
(thus satisfying 3.1 for Sx), while for any yEN, hsx(Sy) = S(hx(Sy)) = S(S(hxy)) 
=S(hsxy) (thus satisfying 3.2 for Sx); whence SxfH. Applying Axiom P3, 
which holds for (N, 0, x) by assumption, we infer that H= N, which proves the 
lemma. 

Using this lemma we can complete the proof of Theorem II by exactly the 
same argument used earlier to infer the existence of an addition operation from 
Theorem I. The reader will notice that in this earlier argument of Section 2 we 
used Theorem I to obtain the statement of our present lemma; as noted there, 
the remainder of the argument was of a general set-theoretical character inde- 
pendent of the axioms P1-P3, and so can be applied to the induction model 
(N, 0, S) of Theorem II. 
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When we consider multiplication we find a situation entirely analogous to the 
one we have just encountered for addition. By a multiplication operation for 
an induction model (N, 0, S) we mean a binary operation * on N such that the 
equations 

11.1 x*O = 0, 

11.2 x.(Sy) = (x.y) + x, 

hold for all x, yEN, where + is the addition operation for the model. Employ- 
ing a proof closely patterned after the one given above for Theorem II, we can 
show that in every induction model there is one and only one multiplication 
operation. We leave the reader to supply the details of such a proof. 

4. Operations in Peano models obtained by primitive recursion. When we 
come to the operation of exponentiation the situation changes. By an exponen- 
tial operation for an induction model (N, 0, S) is meant a binary operation exp 
such that the equations 

12.1 x exp O = SO, 

12.2 x exp (Sy) = (x exp y)x, 

hold for all x, yfEN, where * is the multiplication of the model. This time there 
is no analogue of Theorem II, for it is simply not true that every induction 
model has an exponential operation; a counter-example is provided by the model 
(N", ao, T) which we have considered in Section 2, where ao and a1 are distinct 
objects, N"= {ao, aI}, and Tao =a1, Ta1=ao. It is a simple matter to show that 
if exp were a binary operation on N" satisfying 12.1 and 12.2 for all x, yEN", 
then we would have ao exp z =ao (for any zEN") from 12.2 (since w ao =ao for 
all wEN"), while from 12.1 we get ao exp ao =a,. This contradiction shows that 
(N", ao, T) possesses no exponential operation. 

However, by an application of Theorem I we can show that every Peano 
model possesses a unique exponential operation. In fact, we can get a general 
result of which this is a special case. 

THEOREM III. Let (N, 0, S) be any Peano model, let f be a unary operation on 
N, and let g be a ternary operation on N. Then there exists one and only one binary 
operation j on N such that the equations 

13.1 jxO = fx, 
13.2 jx(Sy) = gxy(jxy), 

hold for all x, yEN. t 

t This function j is said to be obtained by primitive recursion fromf and g. More generally, one 
allows for the possibility of obtaining an n-ary operation j from an (n - 1)-ary operation f and 
(n+1)-ary operation g, for any n = 1, 2, * * *; we have selected the case n =2 merely to simplify 
notation, since the idea of the proof is the same for any n. 
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(If we take the particular case where f is the unary operation on N such that 
fx = SO for all x EN, and where g is the ternary operation on N such that 
gxyz = z x for all x, y, z, then clearly the function j obtained will be the ex- 
ponential operation.) 

Proof. As remarked in the course of our proof of Theorem II, it is sufficient 
to show that for each x EN there is a unique unary operation j, on N such that 

14.1 izO = fx, 
14.2 ix(Sy) = gxy(jxy), 

for all yEN; for then we can infer Theorem III by a general set-theoretical argu- 
ment which holds for all models (i.e., which does not involve any of the Axioms 
P1-P3). To this end, let N1 be the set NXN of all ordered pairs (y, z) for all 
y, z fEN. For each x fEN let Ox be the element (O,fx) of N1, and let S. be the unary 
operation on N1 such that S.(yz) = (Sy, gxyz) for all y, z EN. Applying Theorem 
I to the Peano model (N, 0, S) and the model (N1, Ox, S.), we see that for each 
xEN there is a unique mapping h. of N into N1 such that the equations 

1. 1 khxO =O., 
15.2 1x(Sy) = Sx(hxy), 

hold for all yEN. 

Next let L and R be the mappings of N1 into N such that L(x, y) =x and 
R(x, y) =y for all x, y?EN, and for each xGENletj, and kx be the unary operations 
on N such that jxy = R(h,y) and kxy L(hxy) for all yC N. We shall show that 
jx satisfies 14.1 and 14.2 for all yEN, but first it is necessary to prove that 
k,y=y for all yEN. To do this, let G be the subset of N consisting of those 
elements y such that k,y =y. Since kxO =L(hxO) =LO, = 0, we see that OGG. 
Next, let y be any element of G. Then k,(Sy) =L(h1t(Sy)) =L(S,(h1ty)) by 15.2. 
By definition of Sx we have 

Sx (1zy) = (S(L(h1y)), gx(L(h1y)) (R(hlzy))) 

= (S(kxy), gx(kxy)(jxy)), 

so that k,(Sy) =S(k,y). Since yEG it follows that k,(Sy) =Sy, whence SyEG. 
We have thus shown that G is closed under S, and since Axiom P3 holds for 
(N, 0, S) we conclude that G=N, i.e., that kxy=y for all yEN. Returning to 
the formula 

S2(h2y) = (S(k,y), gx(k,y) (j,y)), 

derived above, we see that it can now be simplified to 

S3(Ixy) = (Sy, gxy(jxy)). 

Since jx(Sy) =R(h.(Sy)) =R(Sz(hxy)), we get at once that j.(Sy) =gxY(jXy)' 
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showing that jz satisfies 14.2. On the other hand jxO = R(h.O) = RO. =fx, so that 
jz also satisfies 14.1. To complete the proof of Theorem III it merely remains 
to show that jx is the only unary operation on N which satisfies these two equa- 
tions; this can be done along the same lines of argument which we used when we 
inferred from Theorem I that there was only one addition operation for any 
Peano model-as we leave the reader to verify. 

5. The relation between Peano models and induction models. Why is it that 
the operations of addition and multiplication exist in every induction model, 
while the existence of an exponential operation can be guaranteed only for 
Peano models? To answer this, we must first understand the relation which 
holds between Peano models and more general induction models. It turns out 
that from the algebraic viewpoint this relation is a very simple and natural one. 

Let 9z-(N, 0, S) and a1 = (N1, O1, S1) be any two models. We say that , 
is a homomorphic image of a if there exists a homomorphism h of 94 onto =1, 
i.e., a function h whose domain is N, and whose range is the whole of N1, such 
that hO = 01 and h(Sx) = S1 (hx) for all x E N. 

THEOREM IV. Let ot = (N, 0, S) be a Peano model and ot1 - (N(, 01, S1) an 
arbitrary model. A necessary and sufficient condition that S1 be a homomorphic 
image of ot is thatct , be an induction model. 

Proof of necessity. Suppose that oi1 is a homomorphic image of O, and let h 
be a homomorphism of DI onto oi1. Let G1 be any subset of N1 such that O1EGC 
and such that G1 is closed under Si. To show that DI, is an induction model, it 
suffices to show that G1 = N1. To this end we consider the subset G of N consist- 
ing of just those elements x such that hxEGi. Since hO =01 we see that OEG. 
Furthermore, G is closed under S. For suppose xEG, so that hxEGl. Now 
S,(hx) EG, since G1 is closed under Si. But h(Sx) = S1(hx) since h is a homomor- 
phism. Thus h(Sx) EG1 and so SxCG; hence G is closed under S. Since (N, 0, S) 
satisfies Axiom P3, we see that G=N. This means that hxCG1 for all xcN. 
Since h has domain N and range N1 we infer that G1 = N1. 

Proof of sufficiency. Suppose that (N1, 0i, Si) is an induction model. Since 
(N, 0, S) is a Peano model we can apply Theorem I to infer the existence of a 
(unique) homomorphism h of t into 9i. To complete the proof of our theorem 
it is only necessary to show that the range of h is the whole of N1. But clearly 
the range of h contains 01, since hO = 01, and it is closed under S, since for any 
element z in the range of h there must be an x E N for which hx =z, whence 
S1z = S,(hx)= h(Sx) so that Siz is also in the range of h. But MR1 satisfies Axiom 
P3, so the range of h is N1 as was to be shown. 

From Theorem IV there follows an important and well-known corollary. 

THEOREM V. Any two Peano models are isomorphic. t 

Proof. Let 9R and MR1 be any Peano models. By Theorem IV there is a homo- 

t That is, there is a homomorphism of one onto the other which is one-one. 
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morphism h of DI onto OZ, and a homomorphism hi of OZi onto OZ. Clearly the 
composed function (hih), which is a unary operation on N such that (hih)x 
= hi(hx) for all xCN, is a homomorphism of OZ into DI. But by Theorem I there 
is only one homomorphism of DI into DI, and obviously the identity operation 
on OZ is such a homomorphism. Hence (hih) is the identity operation: (hih)x = x 
for all xEcN. It easily follows that h is one-one, and hence h is an isomorphism 
of 9 onto OL1. 

The principal significance of Theorem V is a metamathematical consequence 
to the effect that for a certain large set of sentences containing the symbols 
"N", "O", and "S", any sentence of the set which is true of one Peano model is 
also true of every other Peano model; hence if a sentence of this set is true of 
some particular Peano model such as the system (N*, 0*, S*) of natural num- 
bers as we know them intuitively, it will be a logical consequence of the Axioms 
P1-P3. The set of sentences to which this metamathematical result applies con- 
tains all those sentences about models which have any interest for us in the 
present work. Accordingly, from now on, instead of speaking of an arbitrary 
Peano model we may speak of the system (N*, 0*, S*) of natural numbers. 

In Theorem II we have seen that every induction model OZ= (N, 0, S) 
possesses a unique operation of addition, +. Now that we see from Theorem IV 
that OZ bears a close relation to the system of natural numbers W* = (N*, 0*, S*), 
it is natural to inquire into the relation between the operation + of Di and the 
addition operation + * of the system 9R*. The answer to this inquiry is given by 
the following result. 

THEOREM VI. Let OZ = (N, 0, S) be any induction model and + its operation 
of addition. Let h be the unique homomorphism of W* onto SR. Then h(x+*y) 
=hx+hy for all x, yCN*. 

Proof. Let x be any element of N*, and let G be the subset of N* such that 
yCG if and only if h(x+*y)=hx+hy. Since h(x+*O*)=hx=hx+O=hx+hO* 
we see that 0*CG. Now let y be any element of G. Then h(x+*y) =hx+hy, so 
that h(x + * S*y) = h(S*(x + * y)) = S(h(x + * y)) = S(hx + hy) = hx + S(hy) 
=hx+h(S*y), and hence S*yCG. Since G is closed under S* we apply Axiom 
P3 (which holds for W*) to conclude that G =N*; and this proves the theorem. 

In the terminology of set-theory and algebra we express the content of Theo- 
rem VI by saying that the operation + on N is the image (under the homo- 
morphism h) of the operation + * on N*. The corresponding theorem for multi- 
plication is equally true, and can be proved in essentially the same way. Now 
there is a well-known result for general algebraic systems to the effect that if an 
equation is satisfied identically in one system, the same equation will be satisfied 
in any homomorphic image of the system if each operation of the original system 
which enters into the equation is replaced by an operation (of the second sys- 
tem) which is its image under the homomorphism. It follows that such identities 
as the associative, commutative, and distributive laws which hold for +* and 
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* * in the system 01* will also hold for the operations + and * of any induction 
model. Actually this fact can be shown directly, without appeal to any result 
which holds for general algebraic systems; for upon inspecting the usual deriva- 
tion of these laws for Peano models, proceeding from 1.1, 1.2, 11.1, and 11.2, 
it will be found that only Axiom P3, never P1 or P2, is used. 

6. Congruence relations. Another fact about homomorphisms which is well 
known for general algebraic systems, and which can be established directly in a 
simple manner for the models under investigation here, is their close connection 
with congruence relations. By a congruence relation for a model 9Z = (N, 0, S) 
is meant an equivalence relation R on Nt such that whenever xRy then also 
(Sx)R(Sy). If h is any homomorphism of Di into some other model, then the 
relation Rh such that for any x, y E N we have xRhy if and only if hx = hy, is a 
congruence relation. Conversely, for every congruence relation R of 9R there is 
a homomorphism h of Di onto some other model Es, such that Rh=R. To con- 
struct EIR we take NR to be the class of all equivalence sets XR for all xCN, we 
let SR be the operation on NR (whose existence follows from the fact that R is a 
congruence relation of DZ) such that SRXR = (SX)R for all xCN, and we set 
ER= (NR, OR, SR). If we define h to be the function mapping N onto NR such 
that hx=XR for all xEN, we easily see that h is a homomorphism of Di onto YIR 
and that Rh=R. 

If hi and h2 are homomorphisms of DI onto models oi1 and 9R2 respectively, 
and if Rh1=Rh2, then DZI and DZ2 are isomorphic. It follows that every homo- 
morphic image of a model DI is isomorphic to one of the models EZR determined 
(in the manner described above) by some congruence relation R of DZ. In view 
of Theorems IV and V we therefore see that every induction model is isomorphic 
to a model DI determined by some congruence relation R of the system DI* of 
natural numbers. 

As it happens, we can give an explicit description of all congruence relations 
on DI* in terms of the familiar ordering relation < on N*.t Namely, let m, n 
be any elements of N*. We define the relation Rm,n on N* by the rule that 
xRm,ny if and only if one of the following two conditions holds: (i) x, y <n and 
x=y, (ii) x, y>n and for some zCN* either x=y+*(z.* m) or y=x+*(z.* m). 

THEOREM VII. A binary relation R on N* is a congruence relation of D* if 
and only if it is the identity relation on N* or there exist numbers m, n E N* such 
that R =Rm,n. 

t An equivalence relation on N is a binary relation R, having N both for its domain and range, 
which is reflexive, symmetric, and transitive. It is an elementary fact of set-theory that for each 
such relation R there is a partition of N into disjoint subsets such that two elements are in the 
same subset if and only if these elements are in the relation R. The subset containing an element 
x is called the equivalence set of x under R; we will denote it XR. 

$ This ordering relation can be introduced into the axiomatic theory of 9R* (i.e., into the theory 
of Peano models), by the definition x <y if and only if there is an element z 0* such that x+*z =y. 
Since every induction model possesses an addition function, we can use this definition to define a 
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We shall leave the proof of this theorem to the reader, contenting ourselves 
with giving the following hint. If R is a congruence relation other than the rela- 
tion of identity, there must be an xEN* such that xRy for some y#x. Choose 
n to be the least of these numbers x. It follows from this choice of n that there 
are numbers z z 0 such that nRn + *z; choose m to be the least of these numbers 
z. It can then be shown that R =Rm,n. 

The congruence relations Rm,o are the so-called modular congruences which 
have been extensively studied in the theory of numbers. ? The induction model 
'Rm,O corresponding to such a relation is simply the system of residue classes 
modulo m, and the operations of addition and multiplication of this model are 
the familiar + (mod m) and * (mod m). The congruence relations Rm.,, for n $0 
do not seem to have received much attention in the literatoi,re,# but a little re- 
flection will suffice to give the reader a clear intuitive picture of the models 
DI* n, as well as of the corresponding operations of addition and multiplication, 
in this case also. 

Incidentally, it is evident that if R is one of the modular congruence rela- 
tions Rm,,o then SR is a permutation of the elements of NR so that DI satisfies 
Axiom P2 in this case. On the other hand, if R is one of the congruence relations 
Rm,n for n0O, it is clear that OR?SR*x for all xCNR, so that 0T* satisfies Axiom 
P1 in this case. Thus every induction model satisfies either P1 or P2, as men- 
tioned in Section 1. 

Letf be any operation on %*-let us say a binary operation for definiteness. 
If R is an arbitrary congruence relation on DI*, there is in general no binary 
operation g on NR which is a homomorphic image of f under the homomorphism 
h which corresponds to R. It is not hard to see that the necessary and sufficient 
condition for the existence of such an image operation g is that for all x, xi, y, y, 
CN* such that xRx, and yRy1 we have (fxy)R(fx1yi). If this condition holds 
then g is the operation on NR such that gXRYR = (fxy)R for all x, yEN*. 

For example, although 2 =2 (mod 3) and 0 3 (mod 3) we have 2?0 23 (mod 3). 
Hence the exponential operation of N* has no homomorphic image in N&*o. 
On the other hand, + * and * * are examples of what we may call universal opera- 
tions on N*; that is, they are operations f with the property that for any con- 
gruence relation R of N*, (fxy)R(fxiyi) whenever x, y, xi, yi are elements of N* 
such that xRx, and yRyl. t It is for this reason that every induction model 
possesses operations of addition and multiplication. 

relation < in every induction model; but in general the relation so obtained will not be an ordering 
relation. 

? It is customary, in works on number-theory, to write xsy (mod m) instead of xRm,oy. 

# A brief reference may be found in a note by H. S. Vandiver, Bull. Amer. Math. Soc. vol. 40, 
1934, pp. 914-920. 

t We may callf a modular operation if it has this property for all modular congruence relations 
R (and not necessarily for the other congruence relations). An interesting characterization of the 
modular operations has been given by N. G. de Bruijn. (Cf. Proc. Kon. Ned. Ak. Wetensch. Am- 
sterdam, series A, 58 (Indagationes Math. 17), 1955, pp. 363-367). 
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Suppose that an operation j on N* is obtained by primitive recursion from 
operations f and g which are universal; is j necessarily universal? The example 
of the exponential operation shows that this is not the case. However, if j 
happens to be commutative then it will be universal: this can be shown by a 
straightforward generalization of the proof of Theorem II. Thus it is because 
the exponential operation on N* is noncommutative that we cannot extend the 
proof of Theorem II to show the existence of an exponential operation in every 
induction model. 

Of course the condition of commutativity, although sufficient to guarantee 
universality under the stated conditions, is by no means necessary. For example, 
the operation j such that jxy=x2 *y for all x, yE N* is a universal operation, and 
it is obtained by primitive recursion from the universal functions f, g such that 
fx=0 and gxyZ=z+x2 for all x, y, z CN*; butj is noncommutative. 

7. A characterization of Peano models. In Section 2 we have seen that the 
justification for a definition by mathematical induction in a model 91 is the exist- 
ence of a unique homomorphism of 9 into some other model; and thus Theorem 
I constitutes a justification of all definitions by mathematical induction in 
Peano models. As it happens, this property is characteristic for Peano models: 
these are the only models in which all definitions by mathematical induction are 
justified. 

THEOREM VIII. Let 91 be a model such that, for any model 911 there is a unique 
homomorphism h of 9 into 1i. Then 9 is a Peano model. 

Proof. Let 91= (N, 0, S), and suppose that 9 satisfies the hypothesis of the 
theorem. We shall show first that 91 satisfies Axiom P3. To this end let G be 
any subset of N which contains 0 and is closed under S. Let H be the comple- 
ment of G (with respect to N), and assume that H is not empty. Let k be a one- 
one mapping of H onto a set P which is disjoint from N. Let M be the union 
of N and P. Define a unary operation T on M, as follows: If xCEN then Tx = Sx; 
if xEzH and Sx CH then T(kx) =k(Sx); if xEH and SxEG then T(kx) =Sx. 
Let 911 be the model (M, 0, T). It is clear that the mapping hi of N into M such 
that hix =x for all xE:N is a homomorphism of 91 into M11. On the other hand, 
consider the following mapping h2 of N into M: If xEG then h2x=x; if xCH 
then h2x = kx. It is not difficult to see that h2 is also a homomorphism of 91 into 
M11, and that it is distinct from hi. But this contradicts the hypothesis of our 
theorem, and hence shows that it was incorrect to assume H nonempty. H is 
empty, and so G =N. That is, 9 must be an induction model. 

From Theorem IV we can now infer that there is a homomorphism h' of 9* 
onto 9. On the other hand the hypothesis of our theorem assures us that there 
is a homomorphism h of 91 into 91*. As in the proof of Theorem V we consider 
the composed function (hh') which is a homomorphism of 9* into itself, and so 
(by Theorem I) must be the identity operation on 9*. It follows that h' is 
one-one, and hence is an isomorphism of 9* onto 9t. This proves the theorem. 
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It is clear from Theorem VIII that any proof of Theorem I must employ 
all of the Axioms P1-P3, as claimed in Section 2. 

8. Conclusion. We have now finished our discussion of the concept of defini- 
tion by mathematical induction in the theory of numbers, based upon Peano's 
axiomatic foundation for this theory. In the literature of mathematics there are 
various other types of inductive definitions employed, e.g., definition by trans- 
finite induction, or by induction in certain types of partially ordered systems. 
Many of the ideas of this paper can be generalized to cover these other types of 
induction. 

While the method of presenting the material in this paper may have some 
claim to originality, several of the proofs which were given are well known to 
mathematicians. In particular, this is true of the two proofs (one given in detail, 
the other outlined) of Theorem I. According to Professor Alonzo Church, the 
origin of the first proof goes back to the Hungarian mathematician L. Kalmar, 
while the idea of the second proof should be credited to P. Lorenzen, and D. 
Hilbert and P. Bernays, who discovered the proof independently and published 
their work nearly simultaneously.t The proof of Theorem II is given by E. 
Landau: who credits it to L. Kalmar. However, Landau fails to note the sig- 
nificance of the fact that the proof does not use Axioms P1 and P2. ? 

t Kalmgr's article appears in Acta Sci. Math. (Szeged), vol. 9, No. 4, 1950, pp. 227-232. 
Lorenzen's work appears in Monatsh. Math. und Phys., vol. 47, 1938-39, pp. 356-358, and the 
proof of Hilbert and Bernays appears in the Appendix to Volume 2 of their book Grundlagen der 
Mathematik. 

1 See E. Landau, Foundations of Analysis. 
? (Added October 2, 1958.) There has just come to my attention an article with several ideas 

closely related to those of this paper: H. Lenz, Zur Axiomatik der Zahlen, Acta Math. Acad. Sci. 
Hungar., vol. IX, 1958, pp. 33-44. 

GLOBAL EQUILIBRIUM THEORY OF CHARGES ON A CIRCLE* 
HARVEY COHN, University of Arizona 

1. Introduction. Recently electronic calculations were made [1] to see if 
there is some "brute force" solution to an old problem of finding equilibrium 
positions of charged particles constrained to lie on a sphere and acted upon by 
mutual Newtonian repulsion (see Foppl [2]). While some new stable minima 
seemed plausible on the basis of the calculation, the problem of verifying un- 
stable equilibrium positions was too formidable for conclusive results from 
numerical data at present. 

Surprisingly enough the analogous two-dimensional unstable equilibrium 
problem is far from trivial and yet can be analyzed completely; but it never 
seems to have made its way into the literature [6]. Here we would consider n 

* Currently supported by the (Frederick G. Cottrell) Research Corporation. 
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