
I tried to give a clue in my two posts as to how to see this in an elementary way, but it 
seems to have not been helpful.  One really does need to carry out the experiments 
oneself to see it.  At least I did.  The one I described with a triangle at the corner of a 
cube helped me but here is another try. 
 
Parallel transport measures exactly the same thing as the angle sum, or angle sum exess, 
of  a geodesic triangle, or geodesic polygons (yes one can manage without geodesics, but 
it is easier to see what happens with them).  Namely what is being measured is average 
curvature within the polygon.  In Riemann’s habilitationshrift he remarks that curvature 
at a point is angle sum excess or defect, compared to the area, of an infinitesimal triangle.  
This version of curvature is apparently due earlier to Gauss.  The later more global 
version, of parallel transport, may be due later to Levi - Civita.  In fact there is a much 
earlier Chinese mechanical device for producing it called the south pointing chariot. 
 
http://en.wikipedia.org/wiki/South-pointing_chariot 
 
Have you ever tried to prove that the angle sum of a triangle in the euclidean plane is π 
by translating a vector around the triangle, and noting that if you rotate it through the 
interior angle at each vertex so as to remain parallel to the new side, then when it returns 
to its original position, it has rotated exactly through π? 
 
Notice that this process also gives π when performed on a sphere.  But here it equals the 
(negative, i.e. clockwise) sum of the three interior angles through which one has 
translated, plus the contribution from parallel transporting the vectors around the three 
sides of the triangle, keeping them parallel to the geodesic sides all the way.  Thus the 
discrepancy after parallel transport (called “holonomy”) =  angle sum – π.  Hence the 
angle sum of the geodesic polynomial measures essentially the same phenomenon as does 
parallel transport around the geodesic polygon, i.e. average curvature of the interior of the 
polygon. 
 
Thus the angle sum of polygons, which Gauss and Riemann knew reflected curvature, is 
equivalent to the total holonomy obtained by parallel transport.  On a sphere where 
curvature is constant there is thus also a connection with area.  You may see that if the 
radius, hence also curvature, of the sphere is 1, then the area of a geodesic triangle is 
equal to the angle sum –π.  E.g. in post #19, if all three angles are right, this angle excess 
equals π/2, exactly the area of the geodesic triangle which in that case covers 1/8 of the 
sphere.  If you expand the triangle to cover the entire sphere, the area equals 4π = 2π.2 = 
2π.(euler characteristic of the sphere). 
 
In general you can triangulate a compact surface of genus g > 0 by 4g geodesic triangles, 
with 6g edges, 4g faces, and 2 vertices.  Since there are only two vertices, the total angle 
sum of all the triangles is 4π.  (E.g. a torus is triangulated by covering it by a rectangle 
with opposite edges identified, and then adding one vertex to the center of that rectangle 
and joining it to each vertex of the rectangle, obtaining 4 triangles, with 6 edges and 2 
(distinct) vertices.))   If you then give the surface a metric of constant curvature -1, the 
area and angle sum formulas for the triangles adds up to give the formula  



area.(curvature) = 4g(total angle sum –π) = 4π – 4gπ = 2π(2-2g) = 2π.(euler characteristic 
of surface).  This is called the Gauss - Bonnet formula. 
 
 


