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In this last result we can take the limit k ~ 0 and obtain an expansion for the 
Green function for (two-dimensional) polar coordinates: 

Ine2 + p'2 - 2P:' cos(c/> - c/>I)) = 
m (3.152) 

2In(~) + 2 i ~ (p<) cos[m(c/> - c/>')] 
P> m=l m P> 

This representation can be verified by a systematic construction of the two­
dimensional Green function for the Poisson equation along the lines leading to 
(3.148). See Problem 2.17. 

3.12 Eigenfunction Expansionsfor Green Functions 

Another technique for obtaining expansions of Green functions is the use of 
eigenfunctions for some related problem. This approach is intimately connected 
with the methods of Sections 3.9 and 3.1l. 

To specify what we mean by eigenfunctions, we consider an elliptic differ­
ential equation of the form 

V2.I/I(X) + [f(x) + A]I/I(x) = 0 (3.153) 

If the solutions I/I(x) are required to satisfy homogeneous boundary conditions 
on the surface S of the volume of interest V, then (3.153) will not in general have 
well-behaved (e.g., finite and continuous) solutions, except for certain values of 
A. These values of A, denoted by Am are called eigenvalues (or characteristic val­
ues) and the solutions I/In(x) are called eigenfunctions.* The eigenvalue differ­
ential equation is written: 

(3.154) 

By methods similar to those used to prove the orthogonality of the Legendre or 
Bessel functions, it can be shown that the eigenfunctions are orthogonal: 

Iv I/I::'(x)I/In(x) d3x = 8mn (3.155) 

where the eigenfunctions are assumed normalized. The spectrum of eigenvalues 
An may be a discrete set, or a continuum, or both. It will be assumed that the 
totality of eigenfunctions forms a complete set. 

Suppose now that we wish to find the Green function for the equation: 

V~G(X, x') + [f(x) + A]G(x, x') = -47T8(x - x') (3.156) 

where A is not equal to one of the eigenvalues An of (3.154). Furthermore, suppose 
that the Green function is to have the same boundary conditions as the eigen­
functions of (3.154). Then the Green function can be expanded in a series of the 
eigenfunctions of the form: 

(3.157) 
n 

*The reader familiar with wave mechanics will recognize (3.153) as equivalent to the Schrodinger 
equation for a particle in a potential. 
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same as the time-independent Schrodinger eqn
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Substitution into the differential equation for the Green function leads to the 
result: 

(3.158) 
m 

If we multiply both sides by tP~(x) and integrate over the volume V, the ortho­
gonality condition (3.155) reduces the left-hand side to one term, and we find: 

a (x') = 47T tP~(x ') 
n An - A 

(3.159) 

Consequently the eigenfunction expansion of the Green function is: 

G(x, x') = 47T ~ tP~(x')tPn(x) 
n An - A 

(3.160) 

For a continuous spectrum the sum is replaced by an integral. 
Specializing the foregoing considerations to the Poisson equation, we place 

f(x) = ° and A = ° in (3.156). As a first, essentially trivial, illustration we let 
(3.154) be the wave equation over all space: 

(3.161) 

with the continuum of eigenvalues, Ji2, and the eigenfunctions: 

( ) 1 ik.x 
tPk X = (27T)3/2 e (3.162) 

These eigenfunctions have delta function normalization: 

(3.163) 

Then, according to (3.160), the infinite space Green function has the expansion: 

1 1 f eik.(x-x') 
.,---------, = - d 3 k -----::--
Ix - x'i 27T2 k 2 

(3.164) 

This is just the three-dimensional Fourier integral representation of 1I1x - x' I. 
As a second example, consider the Green function for a Dirichlet problem 

inside a rectangular box defined by the six planes, x = 0, y = 0, Z = 0, x = a, 
y = b, Z = c. The expansion is to be made in terms of eigenfunctions of the wave 
equation: 

(3.165) 

where the eigenfunctions which vanish on all the boundary surfaces are 

( ) Is. (I7TX) . (m7TY) . (n7TZ) 
tPlmn x, y, Z = v;Z;;; sm ----;; sm -b- sm -c-

and (3.166) 

damon
This situation is similar to the problem of section 2.9 where the box had potential specified on it’s faces.
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The LHS here comes from inserting equation 3.157 into equation 3.156 and adding gamma_M and subtracting gamma_M for each eigenvalue, and then using equation 3.154 to eliminate many of these terms and leave behind this subtraction.

damon
In other words, these orthogonal functions are already normalized by the denominator of equation 3.162
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there’s actually three integrands: x, y, z

damon
there’s actually three differentials: dx, dy, dz

damon
the discrete sum of eqn 3.160 has now become continuous
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The expansion of the Green function is therefore: 

32 
G(x, x') =-­'TTabe (3.167) 

. (I'TTX) . (I'TTX') (m'TTY). (m'TTY') . (n'TTz) (n'TTZ') 
X f sm -----;; sm -a- sin T s:n T sm -e- sin -e-

lm n~l I m n .. -+-+-
a2 b2 e2 

To relate expansion (3.167) to the type of expansions obtained in Sections 
3.9 and 3.11, namely, (3.125) for spherical coordinates and (3.148) for cylindrical 
coordinates, we write down the analogous expansion for the rectangular box. If 
the x and Y coordinates are treated in the manner of (0, 4» or (4), z) in those 
cases, while the Z coordinate is singled out for special treatment, we obtain the 
Green function: 

G(x, x') = l:b'TT 1.~1 sinC:x) sinC:x') sin( m;y) sin( m;y,) 
(3.168) 

sinh(Klmz<) sinh[Klm(e - z»] X -~~~~-~~~-~ 
Kim sinh(K,me) 

where Kim = 'TT(ZZ/a2 + m2/b2)1I2. If (3.167) and (3.168) are to be equal, it must 
be that the sum over n in (3.167) is just the Fourier series representation on the 
interval (0, e) of the one-dimensional Green function in Z in (3.168): 

. (n'TTZ') sm --
sinh(K'mzJ sinh[Klm(e - z»] = ~ i e sin(n'TTZ) (3.169) 

Kim sinh(Klme) e n~l 2 (n'TT)2 e 
K lm + -

e 

The verification that (3.169) is the correct Fourier representation is left as an 
exercise for the reader. 

Further illustrations of this technique will be found in the problems at the 
end of the chapter. 

3.13 Mixed Boundary Conditions; Conducting Piane 
with a Circular Hole 

The potential problems discussed so far in this chapter have been of the orthodox 
kind in which the boundary conditions are of one type (usually Dirichlet) over 
the whole boundary surface. In the uniqueness proof for solutions of the Laplace 
or Poisson equation (Section 1.9) it was pointed out, however, that mixed bound­
ary conditions, where the potential is specified over part of the boundary and its 
normal derivative is specified over the remainder, also lead to well-defined, 
unique boundary-value problems. Textbooks tend to mention the possibility of 
mixed boundary conditions when making the uniqueness proof and to ignore 
such problems in subsequent discussion. The reason, as we shall see, is that mixed 
boundary conditions are much more difficult to handle than the normal type. 
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