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Abstract

We present an analogy of Fano resonances in quantum interference to classical resonances in
the harmonic oscillator system. It has a manifestation as a coupled behaviour of two effective
oscillators associated with propagating and evanescent waves. We illustrate this point by
considering a classical system of two coupled oscillators and interfering electron waves in a
quasi-one-dimensional narrow constriction with a quantum dot. Our approach provides a
novel insight into Fano resonance physics and provides a helpful view in teaching Fano

resonances.

PACS numbers: 46.40.Ff, 03.65.Nk, 73.23.Ad, 73.63.Kv

1. Introduction

Resonance is a major subject of theoretical and experimental
investigation and the concept of resonances is ubiquitous
in physics and teaching. The search for new effects related
to wave interference and different kinds of resonances in
various physical systems may be of interest. Interference
of a localized wave with propagating states and resulting
Fano resonances in atomic and solid state structures have
been attracting much attention recently [1-19]. At present,
nanotechnology provides various solid state systems such
as Aharonov—Bohm (AB) rings, two-dimensional (2D) elec-
tronic waveguides, nanotubes etc, where alternative electronic
paths may be realized. When there is one open channel, in
particular, for the electrons in a waveguide, the transmission
(the dimensionless conductance) can be represented as [19]

1 (z2+q)2

T(E)= —_—,
(E) 1+4¢% 1+¢?

ey

where ¢ is the coupling parameter, ¢ = (E — Eg)/ " is the
reduced energy, and Egx and I' are the peak position and
the width of the resonance, respectively. The parameter g
measures quantitatively the asymmetry degree of resonance
line in Fano interference between the evanescent bound states
and propagating continuum states. If the coupling parameter
q becomes very strong (g >> 1), then the Fano profile reduces
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to a symmetric Breit-Wigner (BW) (or Lorentzian) line-
shape. For instance, the BW resonances take place in the
transmission of two-barrier heterostructures.

Now it is clear that the Fano interference is a universal
phenomenon because the manifestation of configuration
interference does not depend on the matter. The natural
question then arises: why are Fano-interference phenomena
so interesting in different topics of physics? From the practical
point of view, for instance, the resonances can be considered
as quantum ‘probes’ that provide important information on
the geometric configuration and internal potential fields of
low-dimensional structures. Fano interference may potentially
be used for the design of new types of quantum electronic
or spintronic devices such as Fano-transistors [12], spin
transistors and Fano-filters for polarized electrons [16]. In
addition, Fano phenomena can also be used for lasing without
population inversion [17]. From the educational point of
view, there are wave phenomena such as Young’s interference
in optics or AB interference in quantum mechanics which
are milestones in modern physics. Without a doubt, Fano
interference is such a phenomenon. It is shown that BW
resonances arise due to the interference of two counter waves
in the same scattering channel (similar to resonances of the
Fabry—Perot interferometre in optics). On the other hand, Fano
resonances take place due to wave interference in different
channels.

The main purpose of the present work is to give an intui-
tive explanation of the physical nature of Fano resonances.
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We begin by introducing the basic ideas of the resonance
manifestation in simple mechanical systems by considering
a single oscillator system. The following coupled oscillator
model provides the main idea about the analytical zero-
pole structure of the amplitude and phase behaviours near
the resonances. As a consequence, we obtain the physical
meaning of the amplitude-zero in these systems. Next, we
examine the Fano interference in quantum systems and give a
detailed analysis of the phenomena in a quantum constriction
with an embedded attractive potential (a quantum dot). In
doing so, we find that an interpretation of the manifestation of
Fano interference in quantum structures analogous to coupled
classical oscillators is interesting and useful.

2. Resonance in harmonic oscillator systems driven
by an external force

2.1. A single oscillator

We first consider an oscillating motion in a single oscillator.
We briefly recall the behaviour of the single mechanical
oscillator in a medium under an external harmonic force.
Thus, if a particle moves under the combined influence of
a linear restoring force, a resisting force, and an external
driving force, then the differential equation that describes the
motion is

X+yx +a)(2)x = Acoswt, )

where wq is the natural frequency (eigenmode) of the
oscillator in the absence of damping (defined by the mass
and the spring constant), y is a frictional parameter, and
is a frequency of the external force. The general solution of
equation (2) is the sum of the complementary x. and the
particular x;, solutions. The complementary solution describes
the motion of a damping oscillator

X (1) = e [q1 e + gre ], 3)

where Q= ./wy> —y?2/4, and ¢, and ¢, are complex
amplitudes (g1 = g3).

The simple way of finding a particular solution of
equation (2) is to use the complex representation. To this end,
we rewrite the equation (2) for a particular solution x;, as

Xp+yip+wix, = SAEY +e7). )
The solution may be written as x, = x*+x~, where x* are
solutions for the ‘positive’ and the ‘negative’ frequencies,
respectively. Thus, the particular solutions can be written

as xp(1) =2Re(x™(¢)), where x* may be considered as the
solution of the equation

T+ yit +wjxt = ae, 5)

and a = A/2. Now, the solution of equation (5) can be
expressed in a complex form as x*(t) = ce'’. Here, the
complex amplitude c(w) takes the form as

a
c(w) =

S — 6
W} — P +iyw ©)
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Figure 1. (a) The resonant behaviour of the amplitude in the single,
driven oscillator as a function of the frequency; where the frequency
of the oscillator is in units of the natural frequency, w,. (b) The
phase jump by 7 near the resonance is shown. (Here, a frictional
parameter y = 0.025 is used, and the amplitude is in units of a/w?).

and has the modulus |c(w)| and the phase ¢(w):c(w) =

lc(w)|e @ where
w
s (p((l)) = tan_l (2—)/2> .
C()O —

(N

When we consider the steady-state effects (1 > ¥ 1), the

complementary solution gives a small correction and then can
be neglected. In this case, the solution has the form

lc(@)| =

(a)é —w?)? +w?y?

x(1) ~ |c(w)| cos[wr — p(w)]. ®)

We assume here that the inequality y <« wo holds for the
oscillator parameters. In figure 1(a), it is shown that a
resonance in |c(w)| occurs as the frequency w of the external
force approaches to the natural frequency w of the oscillator.
At the resonance the amplitude of the oscillator takes the
value of |c(wg)| = a/woy > |c(0)|. We can see from equation
(7) that the phase of the oscillator changes by m when the
frequency w goes through the resonance (see figure 1(b)).
This indicates that there is a delay between the action of
the driving force and the response of the oscillator. As w
increases, the phase increases from¢ =0atw =0to ¢ = /2
at w = wy (at resonance) and to 7 as w — o0. It means that if
the displacement and the external force are in phase before the
resonance, then they are out of phase after the resonance.

2.2. Two coupled oscillators

Now we discuss the dynamics of a pair of classical oscillators
coupled by a weak spring. Since we are interested in
the behaviour of the amplitudes after the transient motion
decays, we may well consider only the particular solution
by neglecting a complementary solution. We have seen in
the previous section that the resonant properties are defined
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by complex amplitudes. The equations of motion may be
written as

X+ y1x1 +a)%x1 + VX = Cllelwr,

€))

).C'z + VzXz + CU%Xz + VX = 0,

where vy, describes the coupling of the oscillators.

Firstly, we review the free motion of oscillators (a; = 0).
In the absence of the coupling (vi; = 0), the two free oscilla-
tors swing independently with the given natural frequencies.
On the other hand, the coupled oscillators have two normal
modes (or eigenmodes): firstly, two oscillators swing back
and forth together; secondly, they move in opposite directions.
In order to understand the meaning of eigenmodes, let us
assume that there are no frictions of the oscillators, y; =y, =
0. Then, the eigenmodes of the coupled oscillators can be
obtained from

(@} — o)) (@3 — @*) — v}, =0. (10)

If the coupling parameter is weak (w3 — w} > vyy), then the
eigenmodes of coupled system can be written as

2
2 U2

@ 2 20

w; — W)

an

which are slightly shifted from the eigenmodes of independent
oscillators in the real axis.

Next, we consider the general problem of the excited
oscillators given in equation (9) with friction. After some
manipulation, one can obtain that the steady-state solutions
for the displacement of the oscillators are also harmonic
such that
(12)

X1 = Clelwt, Xy = Cgelwl.

Here, the amplitudes have the forms

(a)g — w0’ +iy0)

c) = ap, 13
! (a)f—a)2+iy1w)(a)§—a)2+iy2w)—v%z1 (13)

a. (14

V12
Cy) = 3

B (0} — W? +iy ) (0] — W +ipw) — Vi,
The phases of the oscillators are defined through

@

c1(@) =lei(@)]e @, (o) = |ea(w)]e . (15)

Note that the phase difference between two oscillators is
given by
Q2 —Q1 =T — 9’

where the extra phase shift 6 is defined by the numerator of

equation (13) as
6 =tan”! (21/2—0)2> .
W), — w

Let us analyse, in detail, the case when the frictional
parameter of the second oscillator is equal to the zero (y, = 0).
It is clear that the coupled system has an effective friction
for normal modes, which means that the amplitudes of the
oscillators are limited. The amplitude of the first oscillator
as a function of the frequency of an external force is shown
in figure 2(a), where we have used y; = 0.025 and vj; =0.1.

(16)
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Figure 2. (a) The resonant behaviour of the amplitude of the first
oscillator in the coupled system; where the frequency is in units of
the natural frequency w,. The amplitude has two peaks (symmetric
and asymmetric line-shape) near the eigenfrequencies

w =Re[@;] = 1.0 and w = Re[@,] = 1.21 and it vanishes at the
zero-frequency, w = w,_,,, = 1.2. (The modulus of the amplitude is

in units of a /a)(z).) (b) The phase behaviour of the first oscillator
amplitude around the resonances.

Two resonant peaks appear in the chosen frequency windows:
one symmetric at w & 1 and the other asymmetric at w =~ 1.21.
The location of the resonant peaks corresponds to the real
parts of the complex eigen-frequencies, @; and @,, which are
determined from the vanishing condition of the denominator
of equations (13) and (14). The imaginary part of the eigen-
frequency specifies the width of the resonance, so as the
single oscillator case. The reason why the second resonant
peak is asymmetric is due to existence of the zero-frequency
at wgero = wy = 1.2 which is right near the peak position.
It can be seen from equation (13) that the amplitude of
the first oscillator ¢; becomes zero at w = w, when y, = 0.
Accordingly, the line shape of the second resonance becomes
distorted. Note that the amplitude of the second oscillator c;
tends to a; /vy, in equation (14) at the zero-frequency.

Now we attempt to understand the physical meaning of
the amplitude-zero in the first oscillator by closely examining
figures 2 and 3. Because there is a coupling between the
first and second oscillators, the phases of both oscillators
are changed when the driving frequency passes through the
resonances. In order to analyse the behaviour of phase, we
sweep the frequency of an external force starting from a
value below the first resonant mode. It means that both
the first and second oscillators are being driven by the
frequency of an external force that is less than the resonant
frequencies (w < Re[w;] = w1, Re[@w,] = 1.21w;). When the
first oscillator is being driven near the resonance (w <
Re[@;]), the amplitude quickly grows to a maximum in
figure 2(a) and the displacement x; of the first oscillator gets
the phase /2 right across the resonance as seen in figure 2(b).
After the frequency passes through the first resonance, but
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Figure 3. (a) The amplitude of the second oscillator as a function
of the frequency; where the frequency is in units of w;. Two
symmetric, resonant peaks appear at the eigenmodes of the coupled
oscillators. (The modulus of amplitude is in units of a/a)(z).)

(b) The phase behaviour of the second oscillator; where a sequential
phase change by 7 is seen as the driving frequency passes through
the resonances.

before it meets the zero-frequency wgeo, the first oscillator
settles into steady-state motion (i.e., the transient motion has
already decayed) and the displacement x; is eventually &
out of phase with respect to the external force. Next, as the
frequency passes through the anti-resonance at @ = wyero, the
phase of the oscillator drops by 7 abruptly. Finally, when the
frequency sweeps through the second resonance, the oscillator
gains the phase factor by .

The tendency of the resonance and of the phase of the
second oscillator as a function of the frequency is rather
straightforward and the results are shown in figure 3. Two
resonant peaks appear and they manifest the symmetric
line shapes in figure 3(a). In figure 3(b), the phase gain
of the second oscillator by m is clearly seen at each time
when the frequency passes through the resonances. Focusing
on the behaviour of the coupled amplitudes at the zero-
frequency, we find that the first oscillator is out of phase
with the second oscillator as @ goes through w,, and that,
at this particular frequency, the motion of the first oscillator is
quenched enforced effectively by the second oscillator.

We have also studied the situation when the frictional
coefficient y, is not strictly zero, but finite. In this case, the
amplitudes of the first and second oscillators are influenced
by the presence of y,. We have seen that the amplitudes of
both the asymmetric line-shape resonance in |c;(w)| from
equation (13) and the symmetric line-shape resonance in
|c2(w)| from equation (14) become smaller as y, increases
(not shown here). In addition, the zero-frequency of the first
oscillator is shifted to the complex-energy plane, accordingly
the amplitude does not vanish at the zero-frequency but gains
a small value.

Further, we find that the zero-frequency of the amplitude
depends on the model we consider. When we generalize the

262

previous treatment to three coupled oscillators, or more, and

when only nearest-neighbour couplings are considered, v,

and v,3, we obtain that the zero-frequency of the amplitude

of the first oscillator is defined by the equation

2 2N, 2 2 2

(0 —w7) (w3 —w) —vy; =0 (17)

(Here, we have considered the case when y; =y, =y =

0.) If w3 > w,, the zero-frequency w,e, for three coupled
oscillators can be expressed as

2

2 U

2 2
w3 — Wy

(18)

This indicates that the position of the amplitude-zero differs
from the previous value of w, and is shifted in the real energy
axis due to the interaction among the oscillators.

3. Fano resonance in a 2D electron waveguide with
an attractive potential (quandum dot)

There is an analogy between the classical system of the
coupled oscillators, which we have investigated in section 2,
and a system of the coupled waves in an electronic waveguide.
In order to see the connection between an asymmetric line-
shape near the resonant frequency in the coupled oscillators
and a main feature of the Fano phenomenon associated with
the propagating and evanescent waves in a quantum system,
we study propagation of the electron waves in an electronic
2D waveguide of width W arranged along the x-axis. The
waveguide geometry is schematically depicted in figure 4,
showing a potential region and an attractive quantum dot
(grey-coloured area) in the waveguide. Here, the confining
potential in the transverse direction is characterized by
the function V.(y) and the attractive potential (dot) by
the function V (x, y). There is a complete basis of functions
describing the transverse motion ¢,(y) of an electron with
energies, E, =h’m*n?/2mW? (with the effective mass m).
The electron waves in the perfect waveguide stretched to
infinity are described by a combination of the plane wave
along the longitudinal direction and confined wavefunctions
in the transverse direction such as et**¢, (), where a wave
vector along the x-direction k, = /2m(E — E,))/h and n is
the number of transverse state. Those propagating states can
be considered as open channels in the waveguide.

In order to find wavefunction of electron in a waveguide
with the dot, we solve the 2D Schrodinger equation

K2 92 92
—(—+— v

2m (8x2+8y2) (. )

+ VW (x, y)+Vix, y)¥(x,y)

=EW¥(x,y), (19)

with the plane wave boundary conditions in leads (x — £00).
It is convenient to expand the wavefunction in the complete
basis of functions describing the transverse motion

W0,y =) Y ()Gn()-

n=1

(20)
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X

Figure 4. Schematic illustration of the electron waveguide with an
embedded quantum dot (grey-coloured area); where the attractive
potential well is centred at x = 0 and y = Y, and the electron
motion is not limited horizontally, —oo < x < oo, but is confined
vertically, 0 <y < W.

Substituting equation (20) into equation (19), we obtain the
coupled-channel equations for an electron in the form

n? 92 =
—5 g V() +’; Vi ()i (¥) = (E = E) ¥ (),
2y
where the coupling matrix elements of the dot’s potential

(which still acts on the x coordinate) are defined to be

V)= [ Ve eIy @
Since equation (21), which is equivalent to the 2D
Schrodinger equation, cannot be solved in general, we
use some simplification that allows us to use a resonant
perturbation theory [20, 21] in the system under the
investigation.

We model the scattering potential as a thin rectangular
potential-well by assuming that the longitudinal size of
the potential well is much smaller than the characteristic
wavelengths of the electron. Then, the matrix elements of the
potential can be written as

2

Vo (X) = ——vpp8(x), (23)
m

where the parameters v,,. of the dot are expressed in an

explicit form [11]. It can be shown that the short range

potential provides the following boundary conditions to be

imposed on the multi-component wavefunctions at x = 0

VY (04) = ¥, (0-),
N (24)
Yo (0+) = Y (0=) = =2 vy P (0).

n'=1

Here, we consider the situation when the energy of incoming
electron is placed in the interval E| < E < E, (the first
energy window), as shown schematically in figure 5. If the
characteristic value of matrix element Vj,, describing the
coupling between two nearest channels, is small compared

A
Vnn(x)
E, Voo (9
E, V,y (0
_H_

(@) (b)

Figure 5. (a) Energy dispersion relation for an electron in a perfect
waveguide and (b) the diagrams for a bound level (near the first
sub-band) and quasi-bound level (near the second sub-band) in the
dot’s effective potential.

to the sub-band distance, then we only need to consider two
coupled equations in the first energy window to understand
the main physical features of the interference. It is well known
that the remaining modes in the waveguide with the attractive
impurity only alter the width and position of the resonances
and hence play a minor role in the Fano phenomenon. Without
much difficulties, our formulation can be extended for a multi-
band approximation.

The wavefunction in the first channel, obtained from the
solutions of the Schrédinger equation, can be written as

aleiklx +blefik]x
9
Cleiklx

x <0,

x>0, (25)

Yi(x) = {
where k| =+/2m(E — E|)/h is a wave vector in the first

channel. Similarly, the wavefunction in the second channel as

k
bze\ z\x,
cpe~klx

x <0,

x>0, (26)

Va(x) = {
where |ky| = /2m(E, — E)/h. Notice that the wavefunction
Y, in the second channel is evanescent wave. These two waves
interfere in the waveguide and the quantum dot plays a role of
a mixer of two different types of waves. The undetermined
amplitudes appearing in equations (25) and (26) are specified
by applying the matching conditions given in equation (24).
Consequently, we obtain

(iky +vi)er +vper =ikiay,

27
viacr + (—lka| +v22)c2 =0,
which give
ik (—|ka| +
o = iky (—ka| +v22) a1, 28)
(ik +vi) (— k2| +v22) — Vi,
ik
¢y = Hivie ar. (29)

(iky +v11) (—lko| +v22) — v,
From equation (28) the transmission and reflection amplitudes
in the first channel are obtained as

1 iki (= k2| +v22) 30)
ai (iky+vi)(—lka| +v2) — v},

1 =
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Figure 6. The wavefunctions of the first and second channels when
the electron energy matches with the zero-energy. Note that in this
case a full reflection occurs.

and

by —vn(=lka|+vxn) +vi,
ar [k +vi)(—lka| +v22) — v,

r = , (3D
respectively. As it follows from equation (30), the trans-
mission amplitude may vanish if —|k;|+ vy, = 0. When this
happens, the reflection amplitude r; is —1 and the energy
at which the transmission becomes zero is determined to be
n%v?
Ezero = E2 - 22 .
2m

(32)

There is a full reflection of the electron wave from a quantum
dot when the electron energy is equal to the zero-energy
E,ero. The wavefunctions in the first and second channels are
schematically depicted in figure 6 at the zero-energy. Like the
classical system, we notice that the position of the amplitude-
zero depends on the number of the channels. For instance,
if we take into account another closed channel n =3 by a
perturbation, the zero-energy given by equation (32) is shifted
in the real axis of energy, as illustrated in the three coupled
oscillators see equation (18). In the meantime, there is a full
transmission of the electron wave through the quantum dot
when the reflection amplitude ri; = 0. If we impose ri; =0
in equation (31), we get the condition for the reflection-zero,
v (—lka| +v22) — v%z = 0. A real solution to this condition
exists at the energy Epax

(33)

Note that the above expressions (equations (32) and (33))
for the transmission-zero and the reflection-zero energies are
exact in the framework of two channel approximation.

We have performed a numerical calculation of the
transmission using the following parameters of the waveguide
and a quantum dot. The width of the waveguide is set to
W =23.7nm and the GaAs effective mass is used as m =
0.067my. This gives E; = 10meV and E; = 40meV for the
first two energy levels due to transverse confinement in the
waveguide. The parameters of the quantum dot are as follows:
Y, =0.55W (the position of the dot in the waveguide), W, =
0.5W (W is the transverse width of the dot), and the scattering
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Figure 7. (a) Fano resonance in the transmission for a quantum
waveguide with a short-range attractive potential (solid line) and a
background transmission (dotted line). (b) The phase shift of the
amplitude for the electron wave in the first propagating channel
(solid line) and the second evanescent channel (dotted line).

parameters a; Vs, = 0.1 eV nm, where V; =100meV (V; is a
depth of attractive potential well) and a; = 1nm (a, is a
thickness of the potential well). The computed transmission
of the system,

T(E) = |t (E),

is plotted in figure 7(a) for the chosen energy window,
where for numerical purposes the following character-
istic energies for the matrix elements of the potential
are used: *v?, /2m = 11.33meV, 7?v3,/2m = 4.40 meV and
h?v?,/2m = 0.34 meV. The pronounced Fano resonant struc-
ture (solid line) is clearly shown, i.e. the combined anti-
resonance at E,, =35.60meV and the nearby resonance
peak at Ei =36.01 meV where the width of resonance
line is I' = 0.19 meV. Notice that if we put our quantum dot
at the centre of the waveguide (v, = 0), then the interference
vanishes and the potential scattering takes place. In this case,
only the so-called background profile in the transmission may
be seen. This background transmission is also plotted for com-
parison in figure 7(a) as a dotted line. In figure 7(b), we also
show the phase shift of the transmitted electron wave with
respect to the incoming wave as a function of the electron
energy for the first propagating channel (solid line) and the
second evanescent channel (dotted line). One can see that the
phase ¢ in the propagating channel changes by 7 abruptly
at the zero-energy and that it jumps up around the reso-
nance peak, thus gaining essentially no net phase shift after
passing through the zero-pole structure. On the other hand,
the phase ¢, of the evanescent channel changes by 7 rather
smoothly over the anti-resonance and resonance structure. We
note that the amplitudes of the transmitted and reflected elec-
tron waves in the quantum channels, equations (28) and (29),
resemble closely with the amplitudes of the coupled classi-
cal oscillators, equations (13) and (14). This indicates that an
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analogy is possible between the classical oscillators and the
quantum waveguide. Accordingly, we believe that our argu-
ment on the physical meaning of the zero-frequency and the
phase behaviour associated with the classical system would
provide a further insight into the Fano resonance physics. The
transmission-zero in the Fano resonance structure in quantum
systems corresponds to the situation when the motion of one
of the coupled classical oscillators is quenched at a special ex-
citing frequency. In addition, the two systems share a common
phase property. The phase drop by 7 occurs when the electron
energy (driving frequency) passes through the special energy
(zero-frequency), and the phase jump by 7 occurs when they
pass through the resonant peaks.

To obtain a simple expression for the transmission
amplitude near a zero-pole region, we consider the
system in the weak coupling regime (i.e. vi, is assumed to
be small in equation (30)). Expanding the numerator and
denominator of equation (30) around the zero and the pole,
respectively, one can write the transmission amplitude #;; in
the desired form

E— Ezero

M i
— LR

(34)
where ER and I' are the peak position and the width of the
resonance, and E,., is the zero-energy of the resonance.
After performing a perturbation approximation we obtain that
the real part of the resonance pole can be written as Ex =
E,e;o+6, where § = 7’121)1221)111)22/m(k12 + v%l) and the width
r= hzvfzklvzz/m(kf +v},). (The energy appearing in k; is
taken at E = Eg.) Here, we note that one can neglect the
difference between E,x and Eg in the weak coupling limit.
Furthermore, the expression for the transmission, equation
(34), can be cast into the canonical Fano form of equation
(1). The coupling parameter g (¢ = vy;/k; in our perturbation
approximation) measures an asymmetry degree of the Fano
resonance line shape between the localized states and the
continuum states.

The Fano profile and phase shift can be measured when
a quantum wire (or waveguide) with an embedded dot is
realized as an arm of AB interferometre. In fact, this kind of
experimental work has already been performed by Kobayashi
et al [14] where the phase shift has been investigated. Notice
that the arguments discussed in the present work result in
the correct reflection on the amplitude—phase behaviour of the
conductance of AB interferometer.

4. Summary

We have discussed an analogy between the coupled classical
oscillators and the two interfering electron waves in the
quantum waveguide with an embedded attractive well. In
the mechanical systems of the coupled oscillators under the
external harmonic force, we have demonstrated that the Fano-
analogous asymmetric resonance line shape can occur in the
displacement field. In particular, we have provided a physical
meaning of the amplitude-zero by examining the analytical
zero-pole structure of the amplitude and the behaviour of the
phase near the resonances. At zero-frequency, the oscillating
motion of one of the oscillator is quenched, while the
other synchronizes with the external driving. In the case

of the quantum system, we have shown that the Fano
resonance structure in the transmission appears due to the
interference between a propagating wave and an evanescent
wave. Therefore, the quantum system may be considered
as a bound oscillator of the evanescent mode coupled with
the oscillator of the propagating mode. In general, the
zero-frequency in the classical system (the zero-energy in the
quantum system) is complex, and when this happens, instead
of the exact quenching, the classical amplitude (the electron
transmission) will manifest a small dip. Finally, we remark
that Fano interference is a universal phenomenon in the sense
that the manifestation of configuration interference does not
depend on matter.
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