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Lecture 6: Dimensionality reduction (LDA)

g Linear Discriminant Analysis, two-classes
g Linear Discriminant Analysis, C-classes
g LDA vs. PCA: Coffee discrimination with a gas 

sensor array
g Limitations of LDA
g Variants of LDA
g Other dimensionality reduction methods 
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Linear Discriminant Analysis, two-classes (1)

g The objective of LDA is to perform dimensionality reduction while 
preserving as much of the class discriminatory information as 
possible
n Assume we have a set of D-dimensional samples {x1, x2, …, xN}, N1 of which 

belong to class ω1, and N2 to class ω2. We seek to obtain a scalar y by projecting 
the samples x onto a line

n Of all the possible lines we would like to select the one that maximizes the 
separability of the scalars
g This is illustrated for the two-dimensional case in the following figures
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Linear Discriminant Analysis, two-classes (2)

g In order to find a good projection vector, we need to define a measure 
of separation between the projections

g The mean values of the x and y examples are

g We could choose the distance between the projected means as our objective function

g However, the distance between projected means is not a very good measure since it does 
not take into account the standard deviation within the classes
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Linear Discriminant Analysis, two-classes (3)
n The solution proposed by Fisher is to maximize a function that represents the difference 

between the means, normalized by a measure of the within-class scatter

n For each class we define the scatter, an equivalent of the variance, as

g and the quantity                    is called the within-class scatter of the projected examples

n The Fisher linear discriminant is defined as the linear function wTx that maximizes the 
criterion function

n Therefore, we will be looking for a projection where examples from the same class are 
projected very close to each other and, at the same time, the projected means are as 
farther apart as possible
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Linear Discriminant Analysis, two-classes (4)
n We need to express J(w) as an explicit function of w in order to find w*

g For this reason we define the equivalent of the scatter in the projection which, in multivariate feature space 
become scatter matrices

n The matrix SW is called the within-class scatter matrix and is proportional to the sample covariance matrix

g The scatter of the projection can be expressed as a function of the scatter matrix in the x feature space

g Similarly

n The matrix SB is called the between-class scatter and, since it is the outer product of two vectors, its rank is at most one

n We can finally express the Fisher criterion in terms of SW and SB as
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Linear Discriminant Analysis, two-classes (5)
n To find the maximum of J(w) we derive and equate to zero

n Dividing by wTSWw

n Solving the generalized eigenvalue problem (SW
-1SBw=Jw) yields

g This is know as Fisher’s Linear Discriminant (1936), although it is not a discriminant but rather a 
specific choice of direction for the projection of the data down to one dimension

( )21
1

W
W

T
B

T

w
S

wSw
wSw

argmaxw* −=








= −

[ ]

[ ] [ ] [ ] [ ]

[ ] [ ] 0wS2wSwwS2wSw

0
dw

wSwd
wSw

dw
wSwd

wSw

0
wSw
wSw

dw
d

)w(J
dw
d

WB
T

BW
T

W
T

B
TB

T

W
T

W
T

B
T

=−⇒

⇒=−⇒

⇒=







=

[ ]
[ ]

[ ]
[ ]

0JwwSS

0wJSwS

0wS
wSw
wSw

wS
wSw
wSw

B
1

W

WB

W
W

T
B

T

B
W

T
W

T

=−⇒

⇒=−⇒

⇒=−

−



Introduction to Pattern Recognition 
Ricardo Gutierrez-Osuna
Wright State University

7

Linear Discriminant Analysis, C-classes (1)
g Fisher’s LDA generalizes for C-class problems very gracefully

n Instead of one discriminant function, we have (C-1) discriminant

n The projection is from a N-dimensional space onto (C-1) dimensions

g Derivation
n The generalization of the within-class scatter matrix is

n The generalization for the between-class scatter matrix is

g where ST=SB+SW is called the total scatter matrix

n For the (C-1) class problem we will seek (C-1) projection vectors wi, which can be arranged 
by columns into a projection matrix W=[w1|w2|…|wC-1] so that
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Linear Discriminant Analysis, C-classes (2)
n Similarly, we define the mean vector and scatter matrices for the projected samples as

n From our derivation for the two-class problem we can show that

n Recall that we are looking for a projection that, in some sense, maximizes the ratio of 
between-class to within-class scatter

n Since the projection is not scalar (it has C-1 dimensions), we use the determinant of the 
scatter matrices into the criterion function, which then becomes

g And we are seeking the projection matrix W* that maximizes this criterion
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n It can be shown that the optimal projection matrix W* is the one whose columns are the 
eigenvectors corresponding to the largest eigenvalues of the following generalized 
eigenvalue problem

g NOTES
n SB is the sum of C matrices of rank one or less and the mean vectors are constrained by

g Therefore, SB will be of rank (C-1) or less

g This means that only (C-1) of the eigenvalues λ i will be non-zero

n The projections with maximum class separability information are the eigenvectors 
corresponding to the largest eigenvalues of SW

-1SB

n LDA can be derived as the Maximum Likelihood method for the case of normal class-
conditional densities with equal covariance matrices

Linear Discriminant Analysis, C-classes (3)
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PCA

-1.96
-1.94

-1.92
-1.9

-1.88 0.3

0.35

0.4
7.32

7.34

7.36

7.38

7.4

7.42

44
44

4

2

4
4 4

4
4

2

4
44

4 4
4 44

4 4
4 4

2

4 44 4

4
4

4

2

433
3 44

43
43

54

2

5

2

4
3

4
4

3

2

54

2

54

2

53

2

3

2
2

2

4 4

2
2

3
4

3

2

43

22

3

22
2

1 3
1 53

5

2

3

2

1

2

5

2

5

2

3 55

2

3133

2

5

2

3
5

13 53 55

2

33
1

51
5

5

2

3 553
5

3
3

22 22

1
53 5

31
33

5
1

3
4

5

2

1 1
53

1

2 2

5
3 5

22

5

2

3
1
13

3

2

5

2

5
5

2

5
1

1 1
3 5

331

2

5
51

513
1

1 5 5
51

111
13

1
1

13
1 5

1
1 1

1
1 5 51

5
1

111 11
1

axis 1

axis 2

ax
is

 3

LDA

LDA Vs. PCA: Coffee discrimination with a gas sensor array
g These figures show the performance of PCA and 

LDA on an odor recognition problem
n Five types of coffee beans were presented to an array 

of chemical gas sensors
n For each coffee type, 45 “sniffs” were performed and 

the response of the gas sensor array was processed in 
order to obtain a 60-dimensional feature vector

g Results
n From the 3D scatter plots it is clear that LDA 

outperforms PCA in terms of class discrimination
n This is one example where the discriminatory 

information is not aligned with the direction of 
maximum variance
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Limitations of LDA
g LDA produce at most C-1 feature projections

n If the classification error estimates establish that more features are needed, some other 
method must be employed to provide those additional features 

g LDA is a parametric method since it assumes unimodal Gaussian likelihoods
n If the distributions are significantly non-Gaussian, the LDA projections will not be able to 

preserve any complex structure of the data that may be needed for classification

g LDA will fail when the discriminatory information is not in the mean but rather 
in the variance of the data
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Variants of LDA
g Non-parametric LDA (Fukunaga)

n NPLDA removes the unimodal Gaussian assumption by computing the between-class 
scatter matrix SB using local information and the K Nearest Neighbors rule. As a result of this

g The matrix SB is full-rank, allowing us to extract more than (C-1) features
g The projections are able to preserve the structure of the data more closely

g Orthonormal LDA (Okada and Tomita)
n OLDA computes projections that maximize the Fisher criterion and, at the same time, are 

pair-wise orthonormal
g The method used in OLDA combines the eigenvalue solution of SW

-1SB and the Gram-Schmidt 
orthonormalization procedure

g OLDA sequentially finds axes that maximize the Fisher criterion in the subspace orthogonal to all 
features already extracted

g OLDA is also capable of finding more than (C-1) features

g Generalized LDA (Lowe)
n GLDA generalizes the Fisher criterion by incorporating a cost function similar to the one we 

used to compute the Bayes Risk
g The effect of this generalized criterion is an LDA projection with a structure that is biased by the cost 

function
g Classes with a higher cost Cij will be placed further apart in the low-dimensional projection

g Multilayer Perceptrons (Webb and Lowe)
n It has been shown that the hidden layers of multi-layer perceptrons (MLP) perform non-linear 

discriminant analysis by maximizing Tr[SBST
†], where the scatter matrices are measured at 

the output of the last hidden layer
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Other dimensionality reduction methods
g Exploratory Projection Pursuit (Friedman and Tukey)

n EPP seeks a M-dimensional (M=2,3 typically) linear projection of the data that maximizes a 
measure of “interestingness”
g Interestingness is based on how much the projected data deviates from normally distributed data in the 

main body of its distribution 
n In other words, EPP seeks projections that separate clusters as much as possible and keeps these clusters compact, a 

similar criterion as Fisher’s, but EPP does NOT use class labels

g After an interesting projection has been found, the structure that makes the projection interesting may be 
removed from the data, and the procedure can be repeated to reveal more of the structure of the dataset

g Sammon’s Non-linear Mapping (Sammon)
n This method seeks a mapping onto an M-dimensional space that preserves the inter-point 

distances of the original N-dimensional space
g This is accomplished by minimizing the following objective function

n The original method did not obtain an explicit mapping but only a lookup table for the elements in the training set
n Recent implementations using artificial neural networks (MLP and RBF) do provide an explicit mapping for test data and 

also consider cost functions (Neuroscale)
n Sammon’s mapping is closely related to Multi-Dimensional Scaling (MDS), a family of multivariate statistical methods 

commonly used in the social sciences
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