We have a partial differential equation:
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with boundary conditions:
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We distretise the r variable first to get:
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This can be arranged into:
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This is a vector equation in the u;’s.
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Here A is a tri-diagonal matrix. Now we apply the Crank-Nicholson method:
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Upon denoting o = kdt/(2072), the equation then becomes:
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In terms of indecies, this stencil becomes:
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The k takes values 5 — 1,7,5 + 1. To tackle the boundary at » = 0, write
u= A; + Asr?, then
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and A} = u! and Ay = (u? — u')/6r? and the equation becomes:
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Which makes the first row of the matrix A to be A(1,:) = (—4,4,0,...,0).
To include the final boundary condition examine the j = Nth node:
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The boundary condition is written as:
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The row becomes:
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