.APPENDIX B The Teéhnique of Multivariate Least Squares Regression
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Technical Background

As discussed m Appendix A previously, the commonly used method of least squares, liﬁca;
regression assumes that one data set is deterministic, ie the reference data {x}, and the other, ie
the predictor data {y}, is dependerit on it. This is equivalent to saying that all the ‘error’ resides

- in one data set and that the other can be measured without error. In the context of correlating

wind speeds from two spatially separated sites it is clear that the ‘emror’ cannot be considered to
reside exclusively in either ‘data set, and therefore it cannot hé presumed that the estimators

/i

. derived using the least squares, linear regression method are unbiased.

Where both data sets are subject to error it is necessary to adopt a multivariate approéch to
obtain unbiased estimators. Physically, this corresponds to the assumption that both data sets, -

{x} and {p}, are dependent on a third variable, in this case, atmospheric conditions at higher -

altitude_s,\ {w}. Hence:

X = mwtete,

Vi T mwiteyte,

where the uncertainties are te;ken' tobe normally disu'ibuted:_ )
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This is not equivalent to the uncertainty model in Appendix A - sce equation'A.2 - and the-

assumnptions of that model are violated. Instead it is suggested that there we may be able to find
some angle, a, at which the residuals become normally distributed - see section B2 for a

- description of the procedure used to determine the this angle.’

.The.residuals d,, when defined in the direction setby e, take the form:
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So that the sum of sqﬁa.res of the residuals bewhes:
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(sin &+ coser

The partial derivatives of S set the conditions on our estimators of m and ¢:
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So that th and ﬁ can be determined from
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sma'Zy,(x, x) + cosaZ(x, x)

This reduces to the usual least squares BStlmatC of the gradlent if we set & = 0° - see equatmn
A.6. The regression coefficient is given by :

Z( Xi Y- xy} 2.7613’
I (Z(x- x) ~(X(xi- x)))(Z(y y) (X7, y»)
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Given th and ¢, the variance of the estimator, y_, is not so easy to calculaie. However, it is

‘assumed that, if the co-ordinates are u_'ansformed to frame), so that the y; axis lies in the
direction in which the residuals are determined, we can proceed in this frame as before. This
corresponds to a rotation of the co-ordinates through an angle of a. Qur estimate of the variance

of ¥ can then be achieved by rotating back to the original co-ordinate system.
So, in the new frame:
var($,) = var(&;)+ xivar( iy )+ 2 xicovar(hu, &) . BI0
_The variance of the efror in the y, direction is given by:
L 85 . BI
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And hence the ﬁariarice‘of the estimator of j’)‘l , for a given value of x; is:
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' which can easily be expressed m terms of the original data sets through the co-ordmate
* transforms given by: C
| . . B.I3
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Y, = ycosa - xsinc



B2

- Given these, and var( J7 ), confidence intervals can be defined at the desired léyels, as follows:

Using these transformations we obtain estimators for x and ﬁna!ly y in the bn'ginal frame;
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- where Zg/ 35 is the value of the Student’s t~d1stnbutton for a conﬁdence level of A2 and N-2

degrees of freedom. To estimate y, for a given value of x, equation B.12 is substxtuted into
equation B.16 then rearranged to give a quadratlc in xy, ie: . :
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where we write ‘©° as a shorthand for #3 , ;yo This is then solved for the value of x
comesponding to x. Note that the two roots arise as any information about the sign of t is lost in
this process. The lower root corresponds to the upper confidence level, ie positive. t, and the
upper one to the lower confidence level, ie negative t. The value of ¥; is then substltuted into
equatlon B.17 to give the f'mal expressmn for the estimator of y.

Determinaﬁon of Alpha

The key to ﬂle success ‘of this technique is the comrect” determination of a. As it proved
impossible to determine an analytical expression for , The form for equation B.19 was
determined empirically from analysis of a large volume of wind speed data. The relation used to

identify an appropriate value in the current context, ic relatmg wind speeds from two, spatially.
separated sites, is: \
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a = tan" (mﬁ-] C B9



where o, and o, represent the variances associated with the two data sets, and m the ‘best ﬁt

gradient, an approximate value for which is obtained from least squares, linear regression. The
_values of o, and oy are obtained from the error mgnals after 3 hour moving average values have

been subtracted from the raw #x} and {} time series data. :

A more rigorous justification for the form of equation B.19 can be obtained through i mspectlon g
of the Chi Squared merit function, which is a measure of how well a statistical model describes

~ agiven data set. For the usual linear model with uncena.mty in one data sef, eg {x}, this can be
~ shown to be: '

Zz(-m,c) =_Z[—-——y".m""'cj R B20

_Minimising this, with Tespect to m and ¢, gives *best fit* model pa:ameters and it is easy to
.verify that, in the case of least squares, linear regression, whcre o; is constant and mdcpendent of
x;, that these are identical to those of equation A.6. : ’

With uncertainty in both data sets, the vanance in the denominator of the above expressmn must
be replaced with:

: . B21
var(y,;-mxi-¢) = var(y,)+ pvar(x;) i
= oltnic?

So that equation B.20 becomes:
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Substitﬁting eqdation B.19 into this expression gives:

Hmey = Epizma-d cosa ' B23
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~ Minimising this with respect to m and ¢ gives exact forms for, their estimators, and it is
straightforward to verify that the résults are identical to those of equatlons B. 8 This is strong
evidence in support of the form chosen for @ in equation B.19. :





