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Soft X-ray (XUV) excitation makes it possible to avoid the predominant role of the surface effects in

luminescence of NiO and reveal a bulk luminescence with a puzzling well isolated doublet of very narrow

lines with close energies near 3.3 eV which is assigned to recombination transitions in self-trapped d -d charge

transfer (CT) excitons formed by coupled Jahn-Teller Ni+ and Ni3+ centers. The conclusion is supported both

by a comparative analysis of the CT luminescence spectra for NiO and solid solutions NixZn1−xO, and by a

comprehensive cluster model assignement of different p-d and d -d CT transitions, their relaxation channels.

To the best of our knowledge it is the first observation of the luminescence due to self-trapped d -d CT excitons.

Introduction. Charge carriers and excitons photo-

generated in a crystal with strong electron-lattice inter-

action are known to relax to self-trapped states causing

local lattice deformation and forming luminescence cen-

ters [1]. Some quite basic questions concerning the self-

trapped exciton remain unresolved, even in the alkali

halides which are traditionally regarded as prototype

insulating materials in which the microscopic features

of the self-trapping processes have been studied most

extensively. The situation seems to be more obscure

for transition metal compounds, in particular, for self-

trapping of the p-d and d -d charge transfer (CT) ex-

citons. The p-d CT excitons have been observed in II-

VI:3d compounds as narrow lines preceding broad inten-

sive p-d CT absorption bands [2]. Most likely, the CT

excitons have not been observed in photoluminescence

mainly due to nonradiative transitions to intra-center 3d

states, hence the d -d crystal field transitions are usually

the main contributors to photoluminescence of 3d com-

pounds. Observation of green luminescence in ZnO:Cu

with a sharp zero-phonon line at 2.859 eV is perhaps

the only reliable evidence of the self-trapping and ra-

diative deexcitation of the p-d CT exciton [3]. Unique-

ness of ZnO:Cu is that the radiative p-d CT transition is

well isolated from the only crystal field 3d9;2E→3d9;2T2

transition by the energy gap of almost 2 eV that blocks

the non-radiative deexcitation of the CT state. Inter-

estingly, that a similar situation with observation of

the ligand-cation CT luminescence is realized in a large
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body of compounds with rare-earth Yb3+ ion [4]. To

the best of our knowledge, there is no reliable literature

data regarding the observation of the self-trapping for

d -d CT excitons. Apparently the appearance of the un-

conventional d -d CT luminescence is feasible only un-

der specific conditions. Here we would like to point

to d -d CT exciton formed by the electron/hole trans-

fer in Ni2+-Ni2+ pairs in nickel monoxide NiO to be a

unique candidate for the self-trapping accompanied by

d -d CT luminescence. In NiO one expects a strong d -d

CT transition related with the σ−σ-type eg−eg charge

transfer t62ge
2
g + t62ge

2
g→t62ge

3
g + t62ge

1
g between nnn Ni

sites with the creation of electron [NiO6]
11− and hole

[NiO6]
9− centers (electron-hole dimer), or nominally

Ni+ and Ni3+ ions. This unique anti-Jahn-Teller tran-

sition 3A2g+
3A2g→

2Eg+
2Eg creates a d -d CT exciton

prone to be self-trapped in the lattice due to electron-

hole attraction and strong ”double” Jahn-Teller effect

for the both electron and hole centers. Below, in the

Letter we present a comprehensive cluster model de-

scription of the p-d and d -d CT transitions in NiO and

experimental results of the measurements of the X-ray

excited luminescence which evidence the manifestation

of the d -d CT luminescence.

p-d and d-d CT transitions in NiO. Explaining

the electronic properties of transition metal monoxides

is one of the long-standing problems in the condensed

matter physics. Nickel monoxide NiO with its rather

simple rocksalt structure, a large insulating gap and an

antiferromagnetic ordering temperature of TN =523K
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has been attracting many physicists as a prototype ox-

ide for this problem. This strongly correlated electron

material has played and is playing a very important role

in clarifying the electronic structure and understanding

the rich physical properties of 3d compounds. However,

despite several decades of studies [5] there is still no lit-

erature consensus on the detailed electronic structure of

NiO and comprehensive assignment of different spectral

features.

Despite the nature of radiative and non-radiative

transitions in strongly correlated 3d oxides is far from

full understanding some reliable semiquantitative pre-

dictions can be made in frames of a simple cluster ap-

proach (see, e.g. Refs. [9] and references therein). The

method provides a clear physical picture of the complex

electronic structure and the energy spectrum, as well as

the possibility of a quantitative modelling. In a certain

sense the cluster calculations might provide a better de-

scription of the overall electronic structure of insulating

3d oxides than the band structure calculations, mainly

due to a better account for correlation effects. Start-

ing with octahedral NiO6 complex with the point sym-

metry group Oh we deal with five Ni 3d and eighteen

oxygen O2p atomic orbitals forming both hybrid Ni 3d-

O 2p bonding and antibonding eg and t2g molecular

orbitals (MO), and purely oxygen nonbonding a1g(σ),

t1g(π), t1u(σ), t1u(π), t2u(π) orbitals. Ground state of

[NiO6]
10− cluster, or nominally Ni2+ ion corresponds to

t62ge
2
g configuration with the Hund 3A2g ground term.

Typically for the octahedral MeO6 clusters [9] the non-

bonding t1g(π) oxygen orbital has the highest energy

and forms the first electron removal oxygen state while

other nonbonding oxygen π-orbitals, t2u(π), t1u(π), and

σ-orbital t1u(σ) have lower energy with the energy sep-

aration ∼ 1 eV in between (see Fig. 1).

The p-d CT transition in NiO10−
6 center is related

with the transfer of O 2p electron to the partially

filled 3deg-subshell with formation on the Ni-site of the

(t62ge
3
g) configuration of nominal Ni+ ion isoelectronic to

the well-known Jahn-Teller Cu2+ ion. Yet actually in-

stead of a single p-d CT transition we arrive at a series

of O 2pγ→ Ni 3deg CT transitions forming a complex p-

d CT band. It should be noted that each single electron

γ→eg p-d CT transition starting with oxygen γ-orbital

gives rise to several many-electron CT states. For γ=t1,2
these are singlet and triplet terms 1,3T1,

1,3T2 for con-

figurations t62ge
3
gt1,2, where t1,2 denotes the oxygen hole.

The complex p-d CT band starts with the dipole-

forbidden t1g(π)→eg, or 3A2g→
1,3T1g,

1,3T2g transi-

tions, then includes two formally dipole-allowed so-

Fig. 1. (Color online) Spectra of the d -d, p-d CT tran-

sitions and intracenter crystal field d -d transitions in

NiO. Strong dipole-allowed σ-σ d -d and p-d transitions

are shown by thick solid arrows; weak dipole-allowed

π-σ p-d transitions by thin solid arrows; weak dipole-

forbidden low-energy transitions by thin dashed arrows,

respectively. Dashed lines point to different EH relax-

ation channels, dotted lines point to PL transitions.

Spectrum of the crystal field transitions is reproduced

from Ref. [14].

called π→σ p-d CT transitions, weak t2u(π)→eg, and

relatively strong t1u(π)→eg CT transitions, respec-

tively, each giving rise to 3A2g→
3T2u transitions. Fi-

nally main p-d CT band is ended by the strongest

dipole-allowed σ→σ t1u(σ)→ eg (3A2g→
3T2u) CT tran-

sition. Above estimates predict the separation between

partial p-d bands to be ∼ 1 eV. Thus, if the most inten-

sive CT band with a maximum around 7 eV observed in

RIXS spectra [7, 10] to attribute to the strongest dipole-

allowed O 2pt1u(σ)→Ni 3deg CT transition then one

should expect the low-energy p-d CT counterparts with
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maximuma around 4, 5, and 6 eV respectively, which

are related to dipole-forbidden t1g(π)→eg, weak dipole-

allowed t2u(π)→eg, and relatively strong dipole-allowed

t1u(π)→eg CT transitions, respectively (see Fig. 1). It

is worth noting that the π→σ p-d CT t1u(π)− eg tran-

sition borrows a portion of intensity from the strongest

dipole-allowed σ→σ t1u(σ)→eg CT transition because

the t1u(π) and t1u(σ) states of the same symmetry

are partly hybridized due to p-p covalency and over-

lap. Interestingly that this assignement finds a strong

support in the reflectance (4.9, 6.1, and 7.2 eV for al-

lowed p-d CT transitions ) spectra of NiO [11]. A rather

strong p(π)-d CT band peaked at 6.3 eV is clearly vis-

ible in the absorption spectra of MgO:Ni [12]. Elec-

troreflectance spectra [13] which detect dipole-forbidden

transitions clearly point to a low-energy forbidden tran-

sition peaked near 3.7 eV missed in reflectance and ab-

sorption spectra [11, 12, 14], which thus defines a p-d

character of the optical CT gap and can be related with

the onset transition for the whole complex p-d CT band.

It should be noted that a peak near 3.8 eV has been also

observed in nonlinear absorption spectra of NiO [15]. At

variance with the bulk NiO a clearly visible intensive

CT peak near 3.6-3.7 eV has been observed in absorp-

tion spectra of NiO nanoparticles [16, 17]. This strongly

supports the conclusion that the 3.7 eV band is related

with the bulk-forbidden CT transition which becomes

the allowed one in the nanocrystalline state. It is worth

noting that the hole-type photoconductivity threshold

in bulk NiO has been observed also at this ”magic” en-

ergy 3.7 eV [6], that is the t1g(π)→eg p-d CT transition

is believed to produce itinerant holes. Indeed, as a re-

sult of the p-d CT transition, a photo-generated elec-

tron localizes on a Ni2+ ion forming Jahn-Teller 3d9,

or Ni1+ configuration, while a photo-generated hole can

move more or less itinerantly in the O 2p valence band

determining the hole-like photoconductivity [6].

Along with p-d CT transitions an important con-

tribution to the optical response of strongly correlated

3d oxides can be related with strong dipole-allowed d -d

CT, or Mott transitions [9]. In NiO one expects a strong

d -d CT transition related with the σ − σ-type eg − eg
charge transfer t62ge

2
g + t62ge

2
g→ t62ge

3
g + t62ge

1
g between

nnn Ni sites with the creation of electron [NiO6]
11−

and hole [NiO6]
9− centers (nominally Ni+ and Ni3+

ions) thus forming a bound electron-hole dimer, or d -

d CT exciton. The charge, spin, and orbital degen-

eracy of the final state of this unique anti-Jahn-Teller

transition 3A2g + 3A2g→
2Eg + 2Eg gives rise to its

complex structure. Thus the exchange tunnel reaction

Ni++Ni3+↔Ni3++Ni+ due to a two-electron transfer

gives rise to two symmetric (S- and P-) excitons (see

Fig. 2. (Color online) Illustration to formation of spin

singlet and spin triplet S- and P-type d -d CT excitons

in NiO.

Fig. 2) having s- and p-symmetry, respectively, with en-

ergy separation δ0 = 2|t| and δ1 = 2
3 |t| for the spin

singlet and spin triplet excitons, where t is the two-

electron transfer integral which magnitude is of the

order of Ni2+-Ni2+ exchange integral [18]. Interest-

ingly that P-exciton is dipole-allowed while S-exciton is

dipole-forbidden. Strong dipole-allowed Franck-Condon

d(eg)-d(eg) CT transition in NiO manifests itself as a

strong spectral feature near 4.5 eV clearly visible in the

absorption of thin NiO films [19], RIXS spectra [7, 10],

the reflectance spectra (4.3 eV) [11]. Such a strong ab-

sorption near 4.5 eV is beyond the predictions of the p-d

CT model and indeed is lacking in absorption spectra

of MgO:Ni [12]. It should be noted that, unlike all the

above mentioned structureless spectra, the nonlinear ab-

sorption spectra [15] of NiO films do reveal anticipated

”fine” structure with two narrow peaks at 4.075 and

4.33 eV preceding strong absorption above 4.575 eV. In-

terestingly that the separation 0.2-0.3 eV between the

peaks is typical for exchange induced splittings in NiO

(see, e.g., the ”0.24 eV” optical feature [14]).

Photoluminescence of NiO. Although the opti-

cal absorption of NiO have been studied experimentally

with some detail, their optical emission properties have

been scarcely investigated.

Measurements performed with UV excitation below

and near optical gap [16, 20, 21] point to a broad lu-

minescence band in the region 2-3.5 eV. The observed

emission bands in the visible and near infrared spectral

ranges are usually attributed to Ni2+ intrasite, or crys-

tal field d -d transitions. In particular, the main green

luminescence band peaked near 2.3 eV is attributed

to a Stokes-shifted 1T2g(D)→3A2g(F ) transition while

the low-energy band peaked near 1.5 eV is related to
1Eg(D)→3A2g(F ) transition [22] (see Fig. 1 for the spec-

trum of the crystal field d -d transitions [14]). However,



4 V. I. Sokolov, V.A. Pustovarov, V.N.Churmanov et al.

the photoluminescence spectra of bulk single crystals

and ceramics of NiO under 3.81 eV photoexcitation [21]

suggestive the band gap excitation have revealed in ad-

dition to the green band a more intensive broad vio-

let PL band with a maximum around 3 eV. The band

was related to a p-d charge transfer. Radiative recom-

bination of carriers in powdered pellets of NiO under

UV excitation with Eexc = 4.43 eV (280 nm) higher

than the CT gap consists at 10K of a broad intensive

band peaked at 2.8 eV with a shoulder centered at about

3.2 eV [20]. Furthermore, the 3.2 eV band reveals a two-

peak structure clearly visible at elevated temperatures.

Different kinetic properties, seemingly different temper-

ature behavior [20] point to different relaxation channels

governing the green and violet luminescence.

It is worth noting that all the studies of the PL in

NiO point to a special role of different defects and the

surface induced local non-cubic distortions in photoe-

mission enhancement and a remarkable inhomogeneous

broadening of the PL bands. Indeed, a most effective

absorption of photons with the energy ~ω ≥ Eg in NiO

given absorption coefficient ≥ 5· 105 cm−1 (Ref.[14]) oc-

curs in a thin (10-20 nm) surface layer with more or less

distorted symmetry and enhanced defect concentration.

In other words, the UV photoexcitation cannot stim-

ulate the bulk luminescence mirroring the fundamen-

tal material properties. These issues did motivate our

studies of the photoluminescence spectra in NiO under

high-energy soft X-ray time-resolved PL excitation tech-

nique.

X-ray excited luminescence of NiO: experi-

mental results. The PL measurements were made

on the samples of NiO and several solid solutions

Ni1−xZnxO (x=0.2, 0.3, and 0.6) with rock salt crys-

tal structure. As starting material we have used the

commercially available powder of NiO (99%; Prolabo)

and ZnO (99.99%; Alfa Aesar) which has been pressed

into pellets under pressure of about 1250 bar and placed

into gold capsules. Quenching experiments at 7.7GPa

and 1000-1100K have been performed using a toroid-

type high-pressure apparatus. Detailes of experimental

technique and calibration are described elsewhere [23].

Electron microscopy analysis shows the samples to be

dense poreless oxide ceramics with rock salt cubic struc-

ture and grain size of about 10-20µm. The NiO

and Ni0.3Zn0.7O ceramic samples has been stired and

pressed into cellulose to enhance the luminescence in-

tensity.

The measurements of PL spectra under soft X-ray

(XUV) excitation were made on a SUPERLUMI sta-

tion (HASYLAB (DESY), Hamburg) using an ARC

Spectra Pro-308i monochromator and R6358P Hama-

Fig. 3. (Color online) XUV excited luminescence spec-

tra of NiO and solid solutions NixZn1−xO (fast win-

dow). Upper panel: Luminescence spectra of the

cellulose coated NiO and Ni0.3Zn0.7O samples under

XUV excitation with energy Eexc =130 eV at T=7.2K.

Bottom panel: Low-temperature (T=7.5K) lumines-

cence spectra of the Ni0.2Zn0.8O and Ni0.6Zn0.4O cel-

lulose free samples under XUV excitation with energy

Eexc =130 eV (solid line) and Eexc =450 eV (dashed

line). Luminescence spectra of Ni0.6Zn0.4O under XUV

excitation with energy Eexc =130 eV at T=7.2K (solid

line) and room temperature (dash-and-dotted line).

matsu photomultiplier. The time-resolved PL spectra

as well as the PL decay kinetics under XUV excita-

tion has been measured on a BW3 beamline by a VUV

monochromator (Seya-Namioka scheme) equipped with

microchannel plate-photomultiplier (MCP 1645, Hama-

matsu). The parameters of time windows: δt=0.1 ns,

∆t=5.7 ns. The temporal resolution of the whole detec-

tion system was 250 ps. The temporary interval between

SR excitation pulses is equal 96 ns.

Luminescence spectra of NiO under XUV excita-

tion with energy Eexc =130 eV and fast window open-

ing by 100 ps after the excitation impulse start are pre-

sented in Fig. 2. The XUV excited luminescence reveals
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puzzling spectral features with two close and very nar-

row lines I1 and I2 with a short decay-time τ < 400 ps

peaked for NiO sample at 3.310 eV (linewidth 17meV)

and 3.369 eV (linewidth 13meV), respectively, mounted

on a weak broad structureless pedestal in the 2.5-4 eV

range which is actually observed only for slow window.

It is worth noting that different optical reflectance and

absorption measurements [11, 14, 24] did not reveal the

I1-I2 doublet.

To the best of our knowledge, such an unusual lumi-

nescence has not been observed to date either in NiO or

other 3d oxides. From the other hand, the well isolated

I1-I2 doublet in the XUV excited luminescence seems

to be a close relative of the broad high-energy (violet)

band in PL spectra peaked near 3.2 eV. Dramatic dif-

ference in violet luminescence spectra under XUV and

VUV excitation can be explained if to account for differ-

ent penetration depth of VUV and XUV quanta. XUV

excitation stimulates the bulk luminescence mirroring

the fundamental material properties while the UV pho-

toexcitation stimulates thin surface layers which irregu-

larities give rise to a strongly enhanced and inhomo-

geneously broadened luminescence. To examine the

origin of the unconventional I1-I2 doublet and make

more reasonable suggestions about its nature we have

made the measurements of the XUV excited lumines-

cence for solid solution Ni0.3Zn0.7O. As in NiO we ob-

served the I1-I2 doublet actually with the same ener-

gies and close linewidths. However, the integral inten-

sity of the I1-I2 doublet in Ni0.3Zn0.7O is appeared to

be almost ten times weaker than in NiO that points to

the relation of the I1-I2 doublet with an emission pro-

duced by somehow coupled pairs of Ni ions. To exclude

conceivable parasitic effect of the cellulose coating we

have made the measurements of the XUV excited lu-

minescence for cellulose free ceramic samples of solid

solutions Ni0.2Zn0.8O and Ni0.6Zn0.4O (Fig. 2, bottom

panel). For the both samples we have observed the same

I1-I2 doublet structure of the luminescence spectra with

practically the same energy separation δ ≈ 60meV and

a small 20meV blue shift as compared with NiO and

Ni0.3Zn0.7O samples. Such a shift is believed to arise

from small strains induced by coatings. Interestingly,

the novel luminescence is clearly visible only at low tem-

peratures: room temperature measurements do not re-

veal noticeable effect (see RT spectrum for Ni0.6Zn0.4O

in Fig. 2 typical for other samples). As it is seen in Fig. 2

(bottom panel) the XUV excitation with higher energy

Eexc =450 eV does induce nearly the same I1-I2 doublet

structure of the luminescence spectra.

Discussion. What is the origin of the unconven-

tional X-ray excited luminescence? There are three

types of candidate initial states for the radiative tran-

sition: i) excited 1T1g(G) or 1A1g(G) terms of Ni2+3d8

configuration which Franck-Condon energies are found

by Newman and Chrenko [14] as 3.52 and 3.25 eV, re-

spectively; ii) self-trapped p-d (t1g(π)→eg) CT exciton,

and iii) self-trapped d -d (eg→eg) CT exciton.

Several arguments rule out the d -d crystal field tran-

sitions 1T1g(G), 1A1g(G)→3A2g(F ) as a source of un-

conventional X-ray excited luminescence. First, the ex-

cited 1T1g(G) and 1A1g(G) terms can non-radiatively

relax to close low-lying terms 3T1g(P ) and 1T2g(D). Sec-

ond, typically the radiative crystal field transitions pro-

duce broad luminescence bands with long lifetimes [20].

Third, the energies of the d -d crystal field transitions

are expected to strongly depend on the Ni concentra-

tion in NixZn1−xO, whereas the energy of the I1 − I2
doublet hardly if any depends on x.

The most effective channel of the recombinational

relaxation for the spin-triplet p-d CT states t62ge
3
gγ(π)

(γ(π) = t1g(π), t2u(π), t1u(π)) implies the π→π transfer

t2g→γ(π) with formation of excited spin-triplet 3T1g or
3T2g states of the t52ge

3
g configuration of Ni2+ ion fol-

lowed by final relaxation to lowest singlet terms 1T2g

and 1Eg producing green and red luminescence, respec-

tively. Obviously, this relaxation is strongly enhanced

by any symmetry breaking effects lifting or weakening

the selection rules. It means the three π→σ p-d CT

transitions t1g(π)→eg, t2u(π)→eg, and t1u(π)→eg are

expected to effectively stimulate the green luminescence

in NiO, however, these p(π)-d CT transitions cannot

explain the origin of violet luminescence, in particu-

lar, specific I1-I2 doublet stimulated by XUV excita-

tion which concentration behavior points to participa-

tion of Ni pairs, or d -d CT transitions rather than iso-

lated NiO6 centers.

It seems the unique ”double” Jahn-Teller d -d CT ex-

citon t62ge
3
g;

2Eg + t62ge
1
g;

2Eg self-trapped in the lattice

due to electron-hole attraction and strong Jahn-Teller

coupling with a reasonable Stokes shift of ∼ 1 eV re-

mains the only candidate to produce unconventional

X-ray excited luminescence. In such a case the I1-I2
doublet can be a Stokes shifted radiative counterpart

of X1-X2 (or X2-X3) excitonic states observed in non-

linear optical absorption spectra of NiO films [15](see

Fig. 2). More explicit assignement of I1 and I2 lines re-

quires further detailed analysis of electron-lattice, spin-

orbital, and exchange coupling effects together with ad-

ditional measurements of temperature and external field

effects. Narrowness of the I1 and I2 lines underlines an

extremely localized character of the double Jahn-Teller

d -d CT exciton.
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Temperature quenching of the I1-I2 luminescence

can be explained by the nonradiative transition to a

nearby d -d CT excitonic state t62ge
3
g;

2Eg + t52ge
2
g;

4T1g.

Indeed, given Dq ≈ 0.1 eV [14] the t62ge
1
g;

2Eg state is

an excited state of Ni3+ ion that is separated from the

true ground state t52ge
2
g;

4T1g by the gap of ∼ 1.0 eV.

It should be noted, however, that the transformation

t62ge
1
g;

2Eg→t52ge
2
g;

4T1g of Ni3+ center implies the con-

figurational change that strongly suppress its probabil-

ity. The self-trapped t62ge
3
g;

2Eg + t52ge
2
g;

4T1g exciton, in

turn, has an effective radiation channel due to σ→σ d -d

CT recombination transition to t62ge
2
g;

3A2g+ t52ge
3
g;

3T2g

state which corresponds to Ni2+-Ni2+ configuration

with one of ions in the excited t52ge
3
g;

3T2g state. In

other words, the temperature quenching of the I1-I2 lu-

minescence can be accompanied with the ignition of the

luminescence in the spectral range 1-2 eV.

It is worth noting that self-trapped d -d excitons can

be formed also due to a trapping of the oxygen hole

borned by the p-d CT transition on the nearest Ni2+

ion. Furthermore, the excitation of the t62ge
3
gt1g(π) p-d

CT exciton at energy 3.7 eV that is sizeably below the

energy of the strongest d -d CT transition at 4.5 eV can

efficiently stimulate the unconventional I1− I2 lumines-

cence due to a self-trapping of the oxygen t1g(π)-hole in

the t2g orbital on the adjacent Ni2+ ion.

Conclusion. Luminescence spectra of NiO and

solid solutions Ni1−xZnxO with the rocksalt-type struc-

ture have been investigated under XUV excitation with

two excitation energy, 130 and 450 eV. Soft X-ray exci-

tation makes it possible to avoid the predominant role

of the surface effects in luminescence and reveal bulk

luminescence with puzzling well isolated I1-I2 doublet

of very narrow lines with close energies near 3.3 eV in

both NiO and solid solutions NixZn1−xO. Comparative

analysis of the p-d and d -d CT transitions, their relax-

ation channels, and luminescence spectra for NiO and

Ni0.3Zn0.7O points to recombination radiative transition

in self-trapped nnn Ni+-Ni3+ d -d CT excitons as the

only candidate source of unconventional luminescence.

To the best of our knowledge it is the first observation of

the self-trapping and luminescence for d -d CT excitons.
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