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[A1=3=1[4] (3.22d)
[D] =2. (3.22¢)

So, as noted in Chapter 1, the highest-dimension field (D) in the supermul-
tiplet must transform as a total divergence. Further since 9, 0“C also
transforms as a total divergence, we see that D — % 4, 0%C does too and so
therefore does the entire coefficient of #998 in V(x 6, 6). This is the
justification of the claim in §2.5 that the variation of the D-term in a vector
superfield is a total divergence.

Since the only requirement (3.2) for a vector superfield is that it be real, it
is easy to construct a particular example of one using the chiral superfield ®
and the anti-chiral superfield ®' given in (2.27), (2.28). For instance

(P -d)=i(p —¢") + i\/_(ezp 6) +109F—iééF*
- 600“06,(¢ + ¢') - 75 6665 8,y + —= 6660* 3, P

\/i
- 11666646, (¢ — ¢") (3.23)
has the form (3.4) with
C=i(g—¢) (3.24a)
x=V2y (3.24b)
IM+iN)=F (3.24¢c)
V,=-d,(p+ @) (3.244)
A=0 (3.24e)
D =0. (3.24f)

Of course, for this identification to work the dimension of the fields ¢, v, F
must be shifted by one unit from the canonical dimensions (1.175), (1.179),
(1.194) which they are assigned in order to make the usual identification
with quarks, leptons etc. Nevertheless the force of the observation (3.24)
becomes clear when we note that the vector potential V,, for the superfield
i(® — @) is a pure U(1) gauge transformation, and thls suggests how to
make a supersymmetric generalization of gauge invariance.

3.3 Supersymmetric gauge invariance

We start with the familiar local U(1) gauge invariance (of Qep). Under such
a gauge transformation the vector potential transforms as

V()= V,)/ (x) = V,(x) + 3,A(x) (3.25)
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where A(x) is a ‘gauge function’. The discussion at the end of §3.2 suggests
an immediate way to supersymmetrize the transformation (3.25). Since V, is
a component of the vector superfield (3.4), and 4,A =0,(¢ + @") is in
i(® — ®*), Wess and Zumino'! suggested that the superfield transforms as

V(x,8,0) > V'(x,6,0)=V(x,86, 0) +i®(x, 6, §) — D'(x,6,8)] (3.26)

under a U(1) gauge transformation. In fact, it is clear from (3.24) thatin a
gauge theory the fields C, y, M, N are not physical degrees of freedom, since
they can be ‘gauged away’ by a suitable choice of ¢ — ¢, y, F while still
leaving A = ¢ + ¢ arbitrary. Then in the ‘Wess—Zumino gauge’ the vector
superfield is

Vwz(x, 6, 6) = 60“0V,(x) + 1666A(x) — 1 0664(x) + 36606D(x)  (3.27)

and from (3.24) the fields 4, 4, D are gauge invariant while V,, transforms as
in (3.25). Note that in the Wess—Zumino gauge the field D, which from
(3.18) transforms as a total divergence, is the coefficient of 6666. Also all
powers V% with n > 2 vanish, since they will involve at least 6°.

The only non-zero power is

Vivz(x, 6, 0) = — (60“0)(65"6)V, V, = 36060V*V, (3.28)

using (1.74a) and (A7). Such a term supplies a mass for the vector field, and
thereby breaks the gauge invariance. Since the massive vector theory is not
gauge invariant, the degrees of freedom C, y, M, N are physical and cannot
be gauged away. In fact, as is clear from their dimensionality (3.22), the field
C supplies the longitudinal mode of the vector field, while yx, ¥ supply the
extra degrees of freedom for the massive gaugino field.

To construct a supersymmetric gauge field theory we need first to
construct the field strength superfield, and secondly to couple the vector
superfield to the charged (chiral) matter superfield in a gauge-invariant way.
We have already observed that the fields 4, i, V,»and D form an irreducible
representation of the supersymmetry algebra, and that all of these fields are
gauge invariant. This suggests that the field strength superfield is a spinor
(chiral) superfield, since the lowest-dimension field is A, with [A,] = 3 = [4]
while [V,,]=2=[D]. It is easy to construct the required superfield W,
using covariant derivatives. Let

W,=DD,V. (3.29)
Then from (3.7)
W, =4ii, (3.30)

and we see that the lowest-dimension field is 4, as required. Also, it follows
from (3.29) that

DjW, =0 (3.31)
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since
l—)/;l—)}-,l—)é- =0 (3.32)

automatically. Thus W, is a chiral superfield satisfying the constraint (2.20),
which means that it has the general form

Wa(y, 8) = 4ida(y) + 0%0us(y) + 66F(y) (3.334)
as in (2.25), with
y“ = x" +i600"0 (3.33b)

but now ¢,z is a bosonic field and F, a spinor field. It follows from (3.32),
(3.28) and (3.11) that

DsW,| = @up = DgD*D,V| = €3,[402D + 2i(0%5")"V,, ] .- (3.34)
Also, using (2.17) and (3.7)
D*W,| = —4F, = D*D*D,V| = D}D?, D,]V|

= DXDj{Dq. D%} - (D, D;}D*)V|

= —4i0%;0,D°DPV| = — 1604, 8,4 % (3.35)
So substituting into (3.33a) gives the field strength superfield
Wo(y,6) = 4ida(y) = [40.°D(y) + 2i(045")a"V,, (1)165

+46%04, 9,4 ¢ (3.36)

with y given by (3.33b). To construct the (gauge-invariant) supersymmetric
pure gauge theory we want the F-component of W*W_,, since, as shown in
Chapter 2, this transforms as a total divergence under supersymmetry
transformations and therefore yields an invariant action. A simple calcu-
lation yields

H(WeW,)p = — V4V, +idc* 8,4 — V¥ (*V,,) + 3D? (3.37)

where

1
£ —
Vin = 3 €.vp0

yee (3.38)
is the dual field strength tensor. We can use (3.37) as the supersymmetric
generalization of the familiar kinetic terms —3V,,, V" of the U(1) gauge
field, since the term involving *V,, is a total divergence and so does not
affect the equations of motion. The D-field is an auxiliary field which can be
eliminated using the equations of motion. The gaugino contribution can be
rewritten in terms of the (four-component) Majorana spinor



