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1 Aim

To introduce you to the basic concepts of electromagnetic wave transmission
along transmission lines.

2 Objectives

e To measure the phase velocity of electromagnetic waves along a par-
ticular coaxial-cable

e To measure the characterisitc impedance of the coaxial cable

e To compare the measured values of phase velocity and characteristic
impedance with their theoretical values

e To find the inductance of a coil connected as an impedance at the end
of a length of the cable

3 Introduction

The aim of this experiment is to introduce you to the propogation of elec-
tromagnetic waves along a transmission line. In this particular case the
transmission line is a coaxial cable, but the principal holds for other trans-
mission lines. The waves along the transmission line behave much like free-
space eletromagnetic waves, but are guided along the line and will experience
different impedance (Zy) and phase velocity (1) to their free-space couter-
parts. The frequency f, phase velocity (v,) and wavelength X are related in
the usual way v, = fA.



4 Theory

The basic equation for the voltage V' of a wave travelling in the positive z
direction along a transmission line is given by the standard equation for a
travelling wave

V(@) = Aexp j(wt — fa) (1)

where w = 27 f and f = 27/ with A the wavelength in the transmission
line.

For the wave travelling in the positive x direction we can relate the
voltage at a given point in the line to the current at that point I(x) through
the characteristic impedance of the line Zjy by:

V(z) = Zol(x) (2)
and simlarly for the wave travelling in the negative x direction
V(z) = —Zol(x) (3)

with a change of sign as the current will be flowing in the opposite direction
along the line.

If the wave is reflected from the far end of the line then we will have a
reflected wave of the form:

V(x) = Bexp j(wt + ) (4)
and the general equation of the wave in the transmission line will be

V(z) = Aexp j(wt — ) + Bexp j(wt + fz) (5)

A
Ia) = o exp(t - fa) — 2 exp it + ) (6)

with the amplitude and phase of the reflected wave depending on the
impedance at the end of the line.

Now consider the impedance at the end of the line. For convenience we
will take the end of the line to be at x = 0 and to have an impedance Z.
At this point we will have

Iy = —— (7)

A_B (8)

[\



which can easily be rearranged to give B in terms of A:

 Zr—Z

=220 9
Zr + Zy ©)

We can now calculate the impedance seen at the input end of the line
by subsituting this value for B back into our original equations 5, 6. After
a small amount of algebra we can see that the input impedance Z(z) at a
distance = from the termination of imepdance Zr is given by:

(Zr + Zo) exp (—jBz) + (Zr — Zo) exp (jBx)

Z(x) = Zo (Zp + Zy) exp (—jBz) — (Zr — Zy) exp (j Bz)

(10)

or even simpler
_, Zr — jZptan fx

N OZO — jZptan Bx

Z(x) (11)

5 Measurement Theory

5.1 Terminated transmission line

Waves launched into the transmission line will travel along it and be reflected
from the end of the line and return to the input. The phase of the returned
signal will depend on the length of the cable, the wavelength of the wave
in the cable and the phase of the reflection at the far end. The signal at
the input end of the cable will consist of the superposition of the input
signal and signal reflected from the far end of the cable. If these two signals
are in phase with each other then the amplitude of the signal at the input
is maximised and we see a resonance. Equivalently we could describe this
situation as the system having a high input impedance.

For a transmission line of characterisitic impedance Z; terminated at
x = 0 by an impedance of Z;, the general expression for the impedance Z;
seen at the input end (z = —I[) is given by equation 11 and is:

Zy + jZo tan (Bl)

Zi = Zy .
Zy + jZy tan (Bl)
where 8 = 27/, with A the wavelength of the electromagnetic wave in the

cable.
When the termination is a short-circuit Z; = 0 and the equation becomes

(12)

ZZ' :]ZU tan (ﬁl) (13)



which shows that the input impedance Z; goes to high, theoretically infinite,
values at certain well defined resonant frequencies given by:

2m+ 1)y,
Flmy = Z1 D% (14
41
When the termination is open-circuit Z; = oo we get
Z | Zo t l
7. = 7, + + jZo tan (Bl) (15)

Y20+ jZ, tan (Bl)

which again has the input impedance Z; going to high, theoretically infinite,
values at a set of resonant frequencies, this time given by:

fn) =

nvp
— 1
5] (16)

5.2 Capacitor in parallel with terminated transmission line

In later parts of the experiment we connect capacitors across the input of
a line terminated by a short-circuit. In this case the system is slightly
more complicated and the resonance occurs when the parallel combination
of capacitor and cable assembly has a maximum impedance. The impedance
of the capacitor of value C is given by:

7 1

L= 17
JwC (17)

and we already have the impedance of the shorted line (equation 13). These
combine in parallel to give an total input impedance of

jZp tan (Bl)

Zeombined = TG 7 an (B1) (18)
This will have a maximum when
wCZptan (Bl) =1 (19)
For simplicity we can use the following substitution:
X= wtai (8l) - 27 f tan (127Tfl/Vp) (20)
and the resonance condition (equation 19) can be rewritten as
X = ZoC (21)



In practice the capacity C' consists of the capacity we have added to the
circuit Cy plus some stray capacity Csdue to the measurement oscilloscope
and its associated wiring. Equation 21 therefore becomes

X = ZoCy + ZpCs (22)

Evaluating the function x at each resonant frequency corresponding to a
value of C, and ploting them against each other allows you to calculate the
characteristic impedance and the stray capacity.

5.3 Transmission line terminated by and inductor

We now consider the more general case of a transmission line terminated by
an inductor of value L, and with a with a capacitor C' across its input. The
situation is similar to the previous one but with the impedance of the line
now given by equation 12, with Z;, the impedance of the inductor given by

Zy = jwL (23)

We can again look at the resonance condition and rearrange the equation to
find the value of the inductor

_ Zo(1 —-2mfCZytan Bl)
- 2nf (2nfCZy + tan Bl)

(24)

6 Equipment

The arrangement of the equipment used in this experiment is shown in
figure 1. The radio-frequency signal generator is used over the frequency
range of around 4 MHz to 80 MHz. The basic idea of the measurement is
that the resistor and system under test form a voltage divider, where Z,
is the impedance of the system under test. As shown in the diagram, an
oscilloscope looks at the size of the signals before and after the resistor (chl
and ch2). Off-resonance Zg,s will be low compared to the input resistor
and so the signal seen on channel 2 will be small, however when the system
is on resonance its impedance Zs,s becomes large and hence the signal on
channel 2 will be at its maximum.
The capacitors are manufactured to an accuracy of +1% + 1 pF.
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Figure 1: A sketch of the equipment

7 Measurements

7.1 Measurement of phase velocity

Use the arrangement of equipment in the figure to measure the resonant
frequencies of a 10m length of the test coaxial cable for both open- and
short-circuited conditions. Measure the actual length of the cable. Think
about exactly where the end of the cable is on the connector. Plot the
resonant frequencies against the integers m and n and find the cable phase
velocity.

7.2 Measurement of characteristic impedance

Using the same measurement arrangement, but with a short-circuited cable
of about 2m long, switch different capacitor values across the cable input
and measure the corresponding lowest resonant frequency for each capacitor
value. You can add the capacitors in parallel to get a good range of values.
Calculate the values of function y (Section 5.2), and plot these against the
capacitor values. From this graph you should be able to calculate the values
of the characterisic impedance and the stray capacity.

7.3 Theoretical values

Measure the dimensions of the sample piece of partially deconstructed cable.
Find the theoretical expressions for the phase velocity and the characteristic
impedance and use them to calculate the values for your cable.

The dielectric in the cable is polythene.



You will need to borrow the calipers from the lab technician for this
measurement.

7.4 Effect of stray capacity

In our initial measurement of the phase velocity in the cable we took the
resonant condition given in equation 12. This assumed a “perfect” set up
with no stray capacity at the input to the cable. We now know that there
is a small stray capacity.

What effect will this stray capacity have on the calculated value of the
phase velocity in the cable?

Does the new value of the phase velocity significantly affect the calculated
value of the stray capacity?

See appendix A for more details.

7.5 Inductor

Set up the experiment using the 0.5 m length of cable terminated with the
small coil. Make measurements of the the lowest resonant frequency of this
system for a variety of capacitor values. Use only a few of the smallest values
of capacitors. Using your previously calculated values for the characteristic
impedance, phase velocity and stray capacity, find the inductance of the
coil. See section 5.3 for the details of the calculation.



A Effect of stray capacity

In general the equation for the resonance condition of the short circuited
line is with a capacitor across the input is given by equation 19:

wCZptan (Bl) =1 (25)
or equivalently:
1
wZoC. 26
e tan % (26)

If we assume that Cy is small (wZyCs < 1), then the resonance condition

can be described as:
2n fl

Up

4
— —€

= (2n+1)5 (27)

This is very similar to the simpler equation we obtained with no capacitor
present of

27 fl T
= (2 1)= 28
= n 13 (28)
Substituting equation 27 into equation 26 and remembering that:
tan A — tan B
tan (A — B) = —0 2~ 20 (29)

1+ tan Atan B

™

we can expand the right hand side of equation 26 with A = (2n + 1)F and
B = € to get:
e~ tane = 2w f ZpCy (30)

so at the resonances the equation for resonance is now:

2x fl
" (o 1T~ 2m f 200 (31)
Up 2
So equation 28 simplifies to
2n+1) v
==t 2
f= iy (3)
and equation 31 simplifies to
(2n+1) 1
= 33
f 4 l,l*p + ZOCS ( )

Thus the presence of Cs; modifies the interpretation of the gradient of the
graph and will give us a different value of v,.
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