
Appendix A – Tail Dragging Configuration 

 

 

 

 

Appendix B – Servo Sizing 

 



Appendix C – Vortex Panel Method Code (MATLAB) 
%%% Nick Bruno 
%%% Aerodynamics 442 
%%% Dr. Acker  
%%% Fall 08 
%%% CP 10 Vortex Panel Method 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                            Variable Bank                                % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   x =         loaded data 
%   l =         length data 
%   alpha =     angle of attack in degrees 
%   Alpha =     alpha*pi/180 = angle of attack in radians 
%   Vinf =      freestream velocity (m/s) 
%   rho =       freestream density (kg/m^3) 
%   pts =       number of points defining airfoil 
%   xp =        dummy variable 
%   xpoints =   x endpoints for each panel 
%   yp =        dummy variable 
%   ypoints =   y endpoints for each panel 
%   M =         dummy variable (number used for iterations) 
%   MP1 =       M + 1 (used for iterations) 
%   xmid =      x control points 
%   ymid =      y control points 
%   xdelta =    change from x(i) to x(i+1) 
%   ydelta =    change from y(i) to y(i+1) 
%   S =         length of panel  
%   theta =     angle panel makes with horizontal in first quad. 
%   Sine =      sin(theta) 
%   Cosine =    cos(theta) 
%   RHS =       right hand side of eqn used for solving gamma 
% 
%   Variables derived from integration include: 
%   A,B,C,D,E,F,G,P,Q 
% 
%   CN1,2 and CT1,2 are values used to simplify calculations and are a 
%   function of variables previously defined 
% 
%   AT and AN are influence coefficients based off of CN and CT 
%   gamma =     strength of vortex panel at verticies 
%   V =         dimensionless velocity  
%   Cp =        pressure coefficient 
%   gamave =    average strength over a panel 
%   GAM =       circulation at each control point 
%   GAMtot =    total circulation 
%   Lprime =    lift per unit span 
%   chord =     airfoil chord length 
%   x_c =       percent cord for each control point 
%   y_c =       percent height for each control point 
%   cl =        lift coefficient 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                            Begin Program                                % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Clear all variables 
%Clean command window 
%Load Data into variable X 
clear all                                                                   
clc     

  
x = load('example.dat'); 
data = x;                                                                    
l = length (data); 
alpha = x(2,1); 
Vinf = x(1,2); 
rho = x(1,1); 
pts = x(2,2); 

  



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Get x endpoints from data 
%Make x endpoints a column vector                                                                  
    xp = data(:,1); 
xpoints = xp(3:end);    

     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Get y endpoints from data 
%Make y endpoints a column vector 
    yp = data(:,2)    ;                                                          
    ypoints = yp(3:end); 

   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Sets variable M, MP1, and angle of attack 
M = length(xpoints)-1; 

  
MP1 = M + 1; 

  
Alpha = alpha * pi/180; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Get x midpoints from data 
%Make x midpoints a column vector 
%If xendpoints are the same, the midpoint is the endpoint 
%If xendpoints are the opposite, the midpoint is zero 
%If xendpoints are on the left of the y axis add to neg x 
%If xendpoints are on right side of y axis, add to pos x 
%Last line sets the control point for the last iteration 
%Make x midpoints a column vector (these are control points) 
for i = 1:length(xpoints)-1;                                                       
    if xpoints(i) == xpoints(i+1);                                           
        xmid(i) = xpoints(i); 
        elseif xpoints(i) == -xpoints(i+1);                                      
        xmid(i) = xpoints(i)+xpoints(i+1); 
            elseif abs(xpoints(i)) > abs(xpoints(i+1));                              
        xmid(i) = (xpoints(i) - xpoints(i+1))/2 + xpoints(i+1); 
        else abs(xpoints(i)) < abs(xpoints(i+1));                                
        xmid(i) = (xpoints(i+1)-xpoints(i))/2+ xpoints(i); 
    end  
end 
xmid = xmid';                                                           

     

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Get y midpoints from data 
%Make y midpoints a column vector 
%If yendpoints are the same, the midpoint is the endpoint 
%If yendpoints are the opposite, the midpoint is zero 
%If yendpoints are on the left of the x axis add to neg y 
%If yendpoints are on right side of x axis, add to pos y 
%Last line sets the control point for the last iteration 
%Make y midpoints a column vector (these are control points) 
for i = 1:length(ypoints)-1;                                                       
    if ypoints(i) == ypoints(i+1);                                           
        ymid(i) = ypoints(i); 
        elseif ypoints(i) == -ypoints(i+1); 
        ymid(i) = ypoints(i)+ypoints(i+1); 
            elseif abs(ypoints(i)) > abs(ypoints(i+1)); 
        ymid(i) = (ypoints(i) - ypoints(i+1))/2 + ypoints(i+1); 
        else abs(ypoints(i)) < abs(ypoints(i+1)); 
        ymid(i) = (ypoints(i+1)-ypoints(i))/2+ ypoints(i); 
    end 
end 

  
ymid = ymid'; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Plots the x endpoints and y endpoints (Shape of object) 
% Plots the control points 



% figure(1) 
    plot(xpoints,ypoints,'-o'); 
    hold on 
    plot(xmid,ymid,'r+') 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%Finds change in x from one point to the next 
%Sets last delta X to zero (due to clockwise iteration) 
%Changes Xdelta into a column vector 
for i = 1:M                                                      
    xdelta(i) = xpoints(i+1) - xpoints(i); 
end 
xdelta=xdelta';  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Finds change in y from one point to the next 
%Sets last delta y to last change (due to clockwise iteration) 
%Changes ydelta into a column vector     
for i = 1:M                                                       
    ydelta(i) = ypoints(i+1) - ypoints(i); 
end 
ydelta=ydelta';    

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Sets Variables S(i), Theta, sine, cosine, and RHS 
for i = 1: length(xmid) 
     S(i) = sqrt(xdelta(i).^2 + ydelta(i).^2); 
     theta(i) = atan2(ydelta(i),xdelta(i)); 
     sine(i) = sin(theta(i)); 
     cosine(i) = cos(theta(i)); 
     RHS(i) = sin(theta(i) - Alpha); 
end 
S = S';  
theta = theta'; 
sine = sine'; 
cosine = cosine'; 
RHS = RHS'; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Finds Variables A,B,C,D,E,F,G,P,Q, CN2, CN1, CT2, CT1 
%Sets boundary conditions for variables CN2, CN1, CT2, CT1 
for i = 1:M 
    for j = 1:M 
        if i == j 
            CN1(i,j) = -1.0; 
            CN2(i,j) = 1.0; 
            CT1(i,j) = 0.5*pi; 
            CT2(i,j) = 0.5*pi; 
        else  
            A = -(xmid(i)-xpoints(j))*cosine(j) - (ymid(i) -ypoints(j))*sine(j); 
            B = (xmid(i) - xpoints(j))^2 + (ymid(i)-ypoints(j))^2; 
            C = sin(theta(i) - theta(j)); 
            D = cos(theta(i) - theta(j)); 
            E = (xmid(i)-xpoints(j))*sine(j) - (ymid(i)-ypoints(j))*cosine(j); 
            F = log(1+S(j)*(S(j)+2*A)/B); 
            G = atan2(E*S(j),B+A*S(j)); 
            P = (xmid(i) - xpoints(j))*sin(theta(i)-2*theta(j)) + (ymid(i)-

ypoints(j))*cos(theta(i)-2*theta(j)); 
            Q = (xmid(i) - xpoints(j))*cos(theta(i)-2*theta(j)) - (ymid(i)-

ypoints(j))*sin(theta(i)-2*theta(j)); 
            CN2(i,j) = D + 0.5*Q*F/S(j) - (A*C+D*E)*G/S(j); 
            CN1(i,j) = 0.5*D*F + C*G - CN2(i,j); 
            CT2(i,j) = C + 0.5*P*F/S(j) + (A*D-C*E)*G/S(j); 
            CT1(i,j) = 0.5*C*F - D*G - CT2(i,j); 
        end 
    end 
end 



  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Finds Variables AN, AT and sets B.C. for each 
for i = 1:M 
    AN(i,1) = CN1(i,1); 
    AN(i,MP1) = CN2(i,M); 
    AT(i,1) = CT1(i,1); 
    AT(i,MP1) = CT2(i,M); 
    for j = 2:M 
        AN(i,j) = CN1(i,j)+CN2(i,j-1); 
        AT(i,j) = CT1(i,j) + CT2(i,j-1); 
    end 
end 
AN(MP1,1)= 1.0; 
AN(MP1,MP1) = 1.0; 
for j = 2:M 
    AN(MP1,j) = 0; 
end 
RHS(MP1) = 0; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Finds panel strength at each vertex 

  
gamma = AN^-1*RHS; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Finds dimensionless velocity at control points 
for i = 1:M 
    V(i) = cos(theta(i) - Alpha); 
    for j = 1:MP1 
        V(i) = V(i) + AT(i,j)*gamma(j); 
    end 
end 

  
V = V'; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Finds pressure coefficient at each control point 
for i = 1:M 
    Cp(i) = 1 - (V(i))^2; 
end 

  
Cp = Cp'; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Finds average panel strength 
for i = 1:M 
gamave(i) = (gamma(i+1) + gamma(i))/2; 

 

  



Appendix D–Spreadsheet Calculator 

 



Appendix E – Winglet Calculations 
With Winglets 

Typical density of balsa wood = 140 kg/m
3
 = 8.74 lb/ft

3
 

 Volume of winglets => 4 ribs/each side 

 12“ chord 

 10% Thickness of chord => 1.2” wide 

 3/16” thick  

Volume = 2.7in
3
 each => 21.6 in

3
 Total 

 Total weight of winglets => 0.10925 lb 

� � �
������	         if V = 30ft/s, A = 7ft

2
, L = 0.10925 lb, ρ = 0.0023 slug/ft

3
, Re = 180,000 

Δ�� � 0.01507 to account for extra weight of winglets 

Without Winglets 

�� �
��
�	� �

1.1
� � 7 � 0.05 ���  �  �� �  2.8625° 

���� � � �! " ��  
 If � �! � 3°(incidence)  

���� � 0.1341° � �� � 0.85 

Δ�� � 0.25  ; We lose 0.25 Cl if we have no winglets 

Since we lose 0.25 Cl with no winglets, and if adding winglets requires a 0.01507 increase in Cl, it is very 

beneficial to use winglets.  

  



Not Tapered Winglet (Drag Calculations) 

 

For V = 10 ft/s, 20 ft/s, and 30 ft/s 

�% � ��&
' � 0.0023(10)(1)

3.67 � 10*+ � 62.6%3, 125.3%3, 188.01%3 � �%-./0�1 2345%�1 

�� �
0.074
��6

(2) � 178. 9�8:;8/. :/%998:8%.; � 16.25 � 10*<, 14.14 � 10*<, 13.04 � 10*<  

& �  &��= �  >?� �� � 13.5 � 10*< 05
1@�. , 6.05077 � 10

*< 05
1@�. , 1.8688 � 10

*< 05
1@�. 

Where span = 11” = 0.91667ft, and C = chord length = 1 ft 

&AB�C � 0.00171 05 

&AB�C � 0.005965 05 

&AB<C � 0.01237 05 

 

 



Tapered Winglets 

 

Note: Average Reynolds Numbers will be used 

�% � ��&
' � 0.0023(10)(1)

3.67 � 10*+ � 41.78 � 10<, 83.54 � 10<, 125.34 � 10< � �%-./0�1 2345%�1 (��=) 

�� �
0.074
��6

(2) � 178. 9�8:;8/. :/%998:8%.; � 8.81 � 10*<, 7.76 � 10*<, 7.07 � 10*< 

&AB�C � 0.000617 05 

&AB�C � 0.00229 05 

&AB<C � 0.00446 05 

*Values above were found for one winglet (for two sides) The following information is a comparison for 

two winglets (values multiplied by 2) 

Two winglet comparison 

Not Tapered     Tapered 

&AB�C � 0.00342 05                                                 &AB�C � 0.001234 05 

&AB�C � 0.0119 05                                                 &AB�C � 0.00458 05 

&AB<C � 0.02474 05                                               &AB<C � 0.008933 05 

V = 10 



Drag savings by using tapered winglets = 0.002186 lb 

V = 20 

Drag savings by using tapered winglets = 0.00732 lb 

V = 30 

Drag savings by using tapered winglets = 0.0158 lb 

Crosswind Calculations 

 

 

 

Assume: 

Fuselage = 9” Tall; 6” wide 

Wheel @ base of fuselage 

6lb empty plane 

Horizontal crosswind V 

Neglect Tail 

Chord = 12”  

Span = 7 feet 

Cd = flat plate = 2.0 

 

EFG � "&1 � 17.2‐D2*21" " &3 � 10.1" 
 

D1 = 191.664*10
-6

 V
2 

D2 = 669.9*10
-6

 V
2 

D3 = 1.839*10
-6

 V
2 

 

EFG � "3.2966 � 10*<�� " 14.0679 � 10*<�� " 18.57 � 10*L�� � "17.38 � 10*<�� � 18 05 � 8. 

 

D2 = R sin(87) 

D3 = R cos (87) 

EFG,MN��O � 3" � 605 � 18 05 � 8. 

& � 1
2  ��

��P	 

� � 1.331 � 10*L 103=8.<  



V = 32.179 in/s for one wing 

V = 16.08 in/s for both wings 

V = 1.34 ft/s = 0.91363 mi/h 

 

It is recommended that the wheel base is larger than 6” otherwise the plane will tip over with a slight 

breeze.  Note, this is not including the vertical stabilizer.  
 

 

 

 



Appendix F – Gantt Chart 



Appendix G – Individual Budget 



 





 


