
current term dwarfed by the conductio.J! term, can be neglected, leaving us
• ...j , I"'( - (.--J ",,') -" ~ ''kif ...J ~ IV ,with 1'r\.v'f..(:. ~ y 'V'(3 /- flLI5:' -1Cvlt[t t..t),\ £. t3. .

V2E = jWf.LuEE . (7.11)'-
Since E = JluE we also have

~ . ~ .
V J = }wf.LuEJ (7.12) .
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while a similar d~eloEple~\ (s.Wl.§titut~ng(7~) int,Qp.2,Lto eliminate E)
results in V$f.i ~V(1-/1) -? h-:"-1t"t;';1At1 +li" 4:.,411

•../ '.• "V I. .,.J 2=+ . =+
1~\-\::1~"'(,/1AM-W£AA H ..!H = }wf.LuEH (7.13)

Equations (7.11)-(7.13) are the basic equations of the skin effect.
To see the significance of these equations, let us consider a conductive

material filling the half-space z < 0, as shown in Fig. 7.1. Let us imagine
that current flows through this material in the x direction, with the current
density at the surface being Jo A/m2• The current density is independent of

·-tW' 'W" y and x; thus, (7.12) simplifies to ....,,{..:f _ \ I.,U A _.~(!.(\{.lq.-l,,'" ~ '...I _ ~ /~\ G .Jt""'")'-)'-)( ,~,"') 2 (t"' :. ':t - - II, tll ,.r 1- a J•.
1 (w.~~~I\,.t.)"(~').~~ )11 ~ ( A az; = }Wf.LUEJx;. (7.14)

)... ~ ~c-':)1j1-l-=- ~- I J'r;!r:u .'--)1~)t\ - ...•. whi~~nas the solution

(Note that the operator on the left side is the vector Laplacian, but those
on the right have scalar arguments.) Expressions for the vector Laplacian
operator in cylindrical and spherical coordinates will be found in the end­
paper tables. In those coordinate systems the relationship between the two
kinds of Laplacian is much less apparent than in rectangular coordinates
and they are best thought of as quite different operators. '

EXERCISE 7.1 '

Let E(x, y, Z, t) = Eo cos (wt - kz)e". Find Eand V2E

Answers E = Eoe-jkz e". V2E = -k2Eoe-jkZ e", Note that for this particular
E: V2E = -k2E

In most situations, we shall be dealing with materials that contain no
real charge density. This is the case with dielectric materials, and it is also
generally the case with conductive materials, because any real charge that
may exist will repel itself and thus travel outwards until it resides on the
material's outer surfaces. (See Problem 6.5.) Therefore V . 7J = 0, and
assuming that E is a constant not equal to zero, V . E = O. Thus the first
term on the right of (7.7) vanishes, and, substituting into (7.6) we obtain

V2E = jWf.L(J + jWEE) (7.9)

7.3 THE SKIN EFFECT
~'11fIiLli-I-.IIIiII.IIi'"'~~""""'- 1%7S'>I~:ifiit\'~~1&Z! _Th!'JJ,':~!!:!A~i!I.IIJ_=IiI·I:·m·II.1,···,-qIJ1'--1IIa ••• -I·;""I· ••• -

Jx = Ae-(l+j)z/8 + Be(l+j)z/8

where A and B are any constants, and 0, given by

0= ~W:UE

is known as the skin depth.

(7.15)

(7.16)
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decreases exponentially
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Skin effect at the surface of an imperfectly conducting metal.
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As our first application of Maxwell's equations, let us investigate the flow
of alternating currents in good conductors. We shall see that currents tend
to flow on the surface, or "skin." Thus alternating current flow is said to
be influenced by the skin effect. This effect is of practical importance; it
affects resistive losses whenever a high-frequency current flows in an elec­
tronic circuit.

Let us assume that the conductive material in question obeys Ohm's
law, 1= UEE, where UE is the conductivity. Then (7.9) becomes

V2E = jWf.L(UE + jWE)E (7.10)

For simplicity, let us now assume that the material in question is a very good
conductor, so that UE ~ lWEI. (See note3.) In that case, the displacement-

'The absolute-value bars are used because for some materials the value of E can be negative. What matterS

is that the term containing WE should be negligible compared with lhe term containing rh.
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