
VII.7 SO(10) Unification

Each family into a single representation

At the end of chapter VII.5 we felt we had good reason to think that SU(5) unification is

not the end of the story. Let us ask if we might be able to fit the 5 and 10∗ into a single

representation of a bigger group G containing SU(5).

It turns out that there is a natural embedding of SU(5) into the orthogonal SO(10)

that works,1 but to explain that I have to teach you some group theory. The starting point

is perhaps somewhat surprising: We go back to chapter II.3, where we learned that the

Lorentz group SO(3, 1), or its Euclidean cousin SO(4), has spinor representations. We

will now generalize the concept of spinors to d-dimensional Euclidean space. I will work

out the details for d even and leave the odd dimensions as an exercise for you. You might

also want to review appendix B now.

Clifford algebra and spinor representations

Start with an assertion. For any integer n we claim that we can find 2n hermitean matrices

γi (i = 1, 2, . . . , 2n) that satisfy the Clifford algebra

{γi , γj} = 2δij (1)

In other words, to prove our claim we have to produce 2n hermitean matrices γi that

anticommute with each other and square to the identity matrix. We will refer to the γi’s as

the γ matrices for SO(2n).

For n = 1, it is a breeze: γ1 = τ1 and γ2 = τ2. There you are.

1 Howard Georgi told me that he actually found SO(10) before SU(5).
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Now iterate. Given the 2n γ matrices for SO(2n) we construct the (2n + 2) γ matrices

for SO(2n + 2) as follows

γ
(n+1)
j

= γ
(n)
j

⊗ τ3 =

(

γ
(n)
j

0

0 −γ
(n)
j

)

, j = 1, 2, . . . , 2n (2)

γ
(n+1)
2n+1 = 1 ⊗ τ1 =

(

0 1

1 0

)

(3)

γ
(n+1)
2n+2 = 1 ⊗ τ2 =

(

0 −i

i 0

)

(4)

(Throughout this book 1 denotes a unit matrix of the appropriate size.) The superscript in

parentheses is obviously for us to keep track of which set of γ matrices we are talking about.

Verify that if the γ (n)’s satisfy the Clifford algebra, the γ (n+1)’s do as well. For example,

{γ
(n+1)
j

, γ
(n+1)
2n+1 } = (γ

(n)
j

⊗ τ3) . (1 ⊗ τ1) + (1 ⊗ τ1) . (γ
(n)
j

⊗ τ3)

= γ
(n)
j

⊗ {τ3, τ1} = 0

This iterative construction yields for SO(2n) the γ matrices

γ2k−1 = 1 ⊗ 1 ⊗ . . . ⊗ 1 ⊗ τ1 ⊗ τ3 ⊗ τ3 ⊗ . . . ⊗ τ3 (5)

and

γ2k = 1 ⊗ 1 ⊗ . . . ⊗ 1 ⊗ τ2 ⊗ τ3 ⊗ τ3 ⊗ . . . ⊗ τ3 (6)

with 1 appearing k − 1 times and τ3 appearing n − k times. The γ ’s are evidently 2n by 2n

matrices. When and if you feel confused at any point in this discussion you should work

things out explicitly for SO(4), SO(6), and so on.

In analogy with the Lorentz group, we define 2n(2n − 1)/2 = n(2n − 1) hermitean

matrices

σij ≡
i

2
[γi , γj ] (7)

Note that σij is equal to iγiγj for i �= j and vanishes for i = j . The commutation of the σ ’s

with each other is thus easy to work out. For example,

[σ12, σ23] = −[γ1γ2, γ2γ3] = −γ1γ2γ2γ3 + γ2γ3γ1γ2 = −[γ1, γ3] = 2iσ13

Roughly speaking, the γ2’s in σ12 and σ23 knock each other out. Thus, you see that the
1
2σij ’s satisfy the same commutation relations as the generators J ij ’s of SO(2n) (as given

in appendix B). The 1
2σij ’s represent the J ij ’s.

As 2n by 2n matrices, the σ ’s act on an object ψ with 2n components that we will call the

spinor ψ . Consider the unitary transformation ψ → eiωijσijψ with ωij = −ωji a set of real

numbers. Then

ψ†γkψ → ψ†e−iωijσijγke
iωijσijψ = ψ†γkψ − iωijψ

†[σij , γk]ψ + . . .

for ωij infinitesimal. Using the Clifford algebra we easily evaluate the commutator as

[σij , γk] = −2i(δikγj − δjkγi). (If k is not equal to either i or j then γk clearly commutes
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with σij , and if k is equal to either i or j , then we use γ 2
k

= 1.) We see that the set of objects

vk ≡ ψ†γkψ , k = 1, . . . , 2n transforms as a vector in 2n-dimensional space, with 4ωij the

infinitesimal rotation angle in the ij plane:

vk → vk − 2(ωkjvj − ωikvi) = vk − 4ωkjvj (8)

(in complete analogy to ψ̄γ µψ transforming as a vector under the Lorentz group.) This

gives an alternative proof that 1
2σij represents the generators of SO(2n).

We define the matrix γ FIVE = (−i)nγ1γ2
. . . γ2n, which in the basis we are using has the

explicit form

γ FIVE = τ3 ⊗ τ3 ⊗ . . . ⊗ τ3 (9)

with τ3 appearing n times. By analogy with the Lorentz group we define the “left handed”

spinor ψL ≡ 1
2(1 − γ FIVE)ψ and the “right handed” spinor ψR ≡ 1

2(1 + γ FIVE)ψ , such that

γ FIVEψL = −ψL and γ FIVEψR = ψR . Under ψ → eiωijσijψ , we have ψL → eiωijσijψL and

ψR → eiωijσijψR since γ FIVE commutes with σij . The projection into left and right handed

spinors cut the number of components into halves and thus we arrive at the important

conclusion that the two irreducible spinor representations of SO(2n) have dimension 2n−1.

(Convince yourself that the representation cannot be reduced further.) In particular, the

spinor representation of SO(10) is 210/2−1 = 24 = 16−dimensional. We will see that the

5∗ and 10 of SU(5) can be fit into the 16 of SO(10).

Embedding unitary groups into orthogonal groups

The unitary group SU(5) can be naturally embedded into the orthogonal group SO(10).

In fact, I will now show you that embedding SU(n) into SO(2n) is as easy as z = x + iy .

Consider the 2n-dimensional real vectors x = (x1, . . . , xn, y1, . . . , yn) and

x′ = (x′
1, . . . , x′

n
, y′

1, . . . , y′
n
). By definition, SO(2n) consists of linear transformations

on these two real vectors leaving their scalar product x ′x =
∑n

j=1(x
′
j
x

j
+ y′

j
yj) invariant.

Now out of these two real vectors we can construct two n-dimensional complex vectors

z = (x1 + iy1, . . . , xn + iyn) and z′ = (x′
1 + iy′

1, . . . , x′
n
+ iy′

n
). The group U(n) consists of

transformations on the two n-dimensional complex vectors z and z′ leaving invariant their

scalar product

(z′)∗z =

n
∑

j=1

(x′
j
+ iy′

j
)∗(x

j
+ iy

j
)

=

n
∑

j=1

(x′
j
x

j
+ y′

j
y

j
) + i

n
∑

j=1

(x′
j
y

j
− y′

j
x

j
)

In other words, SO(2n) leaves
∑n

j=1(x
′
j
xj + y′

j
yj) invariant, but U(n) consists of the

subset of those transformations in SO(2n) that leave invariant not only
∑n

j=1(x
′
j
xj + y′

j
yj)

but also
∑n

j=1(x
′
j
yj − y′

j
xj).

Now that we understand this natural embedding of U(n) into SO(2n), we see that the

defining or vector representation of SO(2n), which we will call simply 2n, decomposes
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