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Much research effort into synaptic plasticity has been
motivated by the idea that modifications of synaptic
weights (or strengths or efficacies) underlie learning
and memory. Here, we examine the possibility of exploit-
ing the statistics of experimentally measured synaptic
weights to deduce information about the learning pro-
cess. Analysing distributions of synaptic weights requires
a theoretical framework to interpret the experimental
measurements, but the results can be unexpectedly
powerful, yielding strong constraints on possible learning
theories as well as information that is difficult to obtain by
other means, such as the information storage capacity of
a cell. We review the available experimental and theor-
etical techniques as well as important open issues.

Introduction
Synaptic plasticity has been the subject of intense research
since it was hypothesised to play a major role in learning
and memory [1] and was demonstrated by Bliss and Lomo
[2]. There have been significant efforts to link particular
forms of synaptic plasticity to behavioural learning tasks
[3–5]. Because synaptic plasticity alters synaptic weights
within the framework of particular learning tasks, we
would expect the resulting weights to depend causally
upon both the learning rule and the task. Synaptic weights
should, therefore, be a source of information about
plasticity and learning. Ideally, one would be able to
monitor the weights of multiple synapses before, during,
and after learning, but such measurements are currently
beyond the state of the art. However, some information
about synaptic weights can be gathered using today’s
methodology. In particular, statistical information about
the distribution of synaptic weights is available for several
connection types.

Here, we review what can be deduced from measure-
ments of synaptic weight distributions. First, we shall
describe measured distributions at different types of
synapses in various brain areas. We emphasise two strik-
ing observations: (i) the strong similarity of these distri-
butions, and (ii) the small fraction of detectable synapses,
compared to the expectation from the geometry of axons
and dendritic arbors. We shall then examine two types of
theoretical framework. The first approach is to compare
the experimental data to the distribution produced by a
Corresponding author: Barbour, B. (barbour@ens.fr).
Available online 5 November 2007.

www.sciencedirect.com 0166-2236/$ – see front matter � 2007 Elsevier Ltd. All rights reserve
specific synaptic plasticity rule, given some statistical
assumptions about pre- and postsynaptic activity. A second
approach is to link synaptic weights directly to the learning
task, bypassing the particular learning rule. Surprisingly,
this is, in some cases, possible, but a key condition is that
the learning has been optimised in some way. This latter
approach appears to fit the data remarkably well and has
the ability to access high-level information (such as infor-
mation storage capacity) that is very difficult to obtain
experimentally. We end by highlighting several open
issues and prospects for future progress.

Experimental measurements of synaptic weight
distributions
Available measurements of excitatory weights (see Box 1,
Figure 1) have been obtained from somatic recordings. We
shall therefore define synaptic weight as the peak depolar-
isation a synapse produces at the soma. All of the distri-
butions of synapticweights shown inBox1havevery similar
shapes — a monotonic decay from a peak very close to zero
weight. Another similarity between all of the synapse types
is the apparent probability of connection of around 10%. For
the remaining 90% of apparently unconnected cell pairs, it
is, in general, unclear what fraction might be connected by
synapses with weights that fall below the detection
threshold. Because the numbers of these synapses will be
of particular theoretical interest, we shall review the evi-
dence quantifying these ‘‘silent’’ synapses, which we define
as lacking a detectable AMPA-receptor-mediated com-
ponent (NMDA or mGluR receptors might be present).

In juvenile hippocampus, ‘‘silent’’ synapses have been
reported between Schaffer collaterals and CA1 pyramidal
cells. These synapses contain NMDA receptors, but few, if
any, AMPA receptors [6,7]. The numbers of these synapses
are unknown; however, in immunochemical experiments,
�20% of Schaffer collateral synapses in CA1 had no detect-
able AMPA receptors in the adult [8]. Moreover, a much
larger fraction of synapses displayed very weak labelling,
indicating that many synapses might have relatively weak
responses. As for all of the connections presented in Box 1,
the study of Sayer et al. [9] found that�10% of recordings of
CA3-CA1 pyramidal cell pairs yielded detectable responses,
which would certainly leave room for many undetected
synapses.

At the cerebellar granule cell-Purkinje cell synapse, a
large discrepancy between the connection rate predicted on
d. doi:10.1016/j.tins.2007.09.005
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Box 1. Experimentally determined weight distributions

The majority of published synaptic weight distributions concern

recurrent connections between pyramidal cells. One of the first such

studies involved the recurrent connections between layer 2/3

pyramidal cells [56]. Typical pre- and postsynaptic responses from

that work are shown in the inset of Figure 1a. The distribution

obtained is shown in Figure 1a with those from two more recent

studies [57,58]. The overall shape is one of a monotonic decay from

a peak (mode) near zero. Similar studies of the recurrent connec-

tions between layer 5 pyramidal cells [38,59–61] have revealed a

remarkably similar distribution (Figure 1b). By far the largest data

set is that of Sjöström et al., which contains 1004 connections. The

mean response amplitude of these connections was 0.85 � 0.93 mV

(mean � SD), whereas the probability of connection was 11%.

Distributions obtained in other structures also have very similar

shapes, but different amplitude scales. In hippocampus, the

connection between CA3 and CA1 pyramidal cells (Figure 1c)

displayed a mean of 131 mV and a connection probability of 6%

[9]. In cerebellum, the granule cell-Purkinje cell synapse [11,12]

exhibited a mean amplitude of 72 � 63 mV and a connection

probability of 7% (Figure 1d).

Weight distributions are also available for other synapse types,

including synapses involving neocortical interneurones [57], hippo-

campal interneurones [62], and layer 4 spiny stellate cells in the

neocortex [63]. Remarkably, these distributions all have similar

shapes to those presented above, with one significant difference—

pyramidal cell-interneurone connections (in both directions) had

much higher connection probabilities (>50%) [57].
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anatomical grounds [10] and that observed experimentally
[11] strongly suggests the existence of a large majority of
undetectable/silent synapses [11,12]. This notion is sup-
ported by the very restricted simple-spike receptive fields
of Purkinje cells in vivo [13] and their huge expansion after
the induction of synaptic plasticity [14].

Similar anatomical arguments for a high likelihood of a
connection have been made for recurrent pyramidal-cell
connections in neocortex [15]. The current consensus, how-
ever, is that connectivity between neocortical pyramidal
cells is highly diluted, with close axon-dendrite approaches
forming a large pool of ‘‘latent’’ or ‘‘potential’’ synapses [16]
in dynamic equilibrium with genuine synaptic connections
[17–20]. Reconstructions have shown [18,21,22] that a
pyramidal neurone axon shares potential synapses with
the dendrites of all neighbouring neurones. However,
detectable connections were found only for a small fraction
of pairs of pyramidal cells (see Box 1) and appeared to be
correlated with the existence of synaptic boutons [18].

To summarise: there is evidence in cortex, hippocampus,
and cerebellum suggesting the existence of a large fraction
of potential or silent synapses. Furthermore, detectable
synaptic weights in these structures have strikingly similar
distribution shapes (but different scales). We now consider
the theoretical frameworks that can be used to interpret
these distributions.

Theories of synaptic weight distributions
Linking synaptic plasticity and weight distributions

There have been several attempts to link weight
distributions and synaptic plasticity rules; spike-
timing-dependent plasticity (STDP) rules [23] have
received the most attention. Besides the choice of a precise
plasticity rule, determining synaptic weights also requires
knowledge of the activity of the pre- and postsynaptic
www.sciencedirect.com
neurones. This is usually supplied in a statistical way,
and Poisson spike trains are a frequent simplifying
assumption. Correlations between pre- and postsynaptic
activity obviously play an important role. This correlation
can result from the explicit dynamics of the chosen (model)
neurone subjected to presynaptic activity at its many
synapses [24] or be imposed ad hoc to assess its effect on
the weight distribution [25].

Using a simple, additive rule, according to which the
weight change is independent of the synapse strength,
STDP generally produces a bimodal distribution [24,26],
with synaptic strengths clustering both around zero and at
the maximum synaptic weight that must be imposed in
this case to avoid unphysiologically strong synapses (see
Figure 2). This can be understood rather simply: for uncor-
related synaptic activity, the overall effect of the plasticity
rule needs to be a weakening rather than a strengthening
of synaptic strength to avoid uncontrolled growth of synap-
tic strength. This produces the mode at zero. However,
postsynaptic activity tends to be correlated with and to
follow presynaptic activity at stronger synapses. This
positive feedback for sufficiently strong synapses leads
to the other mode at the maximum synaptic strength.

The bimodal distribution resulting from an additive rule
appears to be in conflict with existing data, in which no
such bimodality can be detected. It could however poten-
tially be reconciled with experimental data if maximum
synaptic weights themselves have a wide distribution, as
can be expected for synapses distributed uniformly along
the dendritic tree, because of electrotonic filtering effects.
The nature of the distribution is also sensitive to details of
the rule. Multiplicative STDP rules, in which a synaptic
change depends on the strength of the synapse, can lead to
unimodal distributions, in particular when depression
increases with synaptic strength (see Figure 2). Such
distributions have been adjusted to fit amplitude distri-
butions of miniature EPSCs [26].

In summary, the link between synaptic plasticity and
weight distributions depends upon a difficult-to-determine
parameter, namely, the activity history of pre- and post-
synaptic neurones. Moreover, subtle changes in the
plasticity rule radically alter the relationship between
the plasticity rule and the weight distribution.

Distributions determined by optimality principles

An alternative approach to understanding weight
distributions comes from the hypothesis that weights
are altered by learning with the aim of performing a task.
Knowledge of that task should therefore provide strong
and direct constraints upon the weights, independently of
the exact manner of learning (and thus independently of
the precise plasticity rule). Our own work on the distri-
bution of synaptic weights at the cerebellar parallel fibre-
Purkinje cell (PF-PC) synapse [12] serves as an illustration
of this approach. We reconsidered a classic model of the
Purkinje cell introduced by Marr [27], in which each
cerebellar Purkinje cell acts as a pattern classifier—
whether it is active or not depends upon which parallel
fibre inputs are active (Box 2, Figure 3). Marr proposed
that the correct association between an input pattern and
the Purkinje cell output could be realised by a suitable



Figure 1. Experimental distributions of synaptic weights. (a) Cortical layer 2/3 pyramidal-pyramidal synapses. Red, [56]; green, [57]; blue, [58]. Inset: average presynaptic

action potential (bottom) and excitatory postsynaptic potential (top) of a connected pair of layer 2/3 pyramidal cells; adapted from [56], copyright 1991 by the Society for

Neuroscience. (b) Cortical layer 5 pyramidal-pyramidal synapses. Red, Sjöström et al. data set [38,59]; blue, [60]. (c) Hippocampal CA3-CA1 synapses [9]. (d) Cerebellar

granule cell-Purkinje cell synapses [11,12].
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adjustment of the weights of PF-PC synapses, by using an
error signal provided by the climbing fibre (a form of
‘‘supervised learning’’), a hypothesis subsequently refined
by Albus [28]. Experimental confirmation of the plasticity
of these weights came �10 years later [29].

If we assume therefore that the task of the Purkinje cell
is to associate given outputs to specific input patterns, can
anything be deduced about the quantitative distribution of
synaptic weights at the PF-PC synapse without specifying
the plasticity rule at this synapse? The answer is yes,
particularly if it is also assumed that the performance of
the task has been optimised in some way (see Box 2). The
appeal to optimality is justified in part by a good fit to
experimental data (see below), but it is also reasonable to
consider that evolution would favour effective and efficient
computation.

The optimal weight distribution for a perceptron with
excitatory synapses that best fits the granule cell-Purkinje
cell weight distribution is shown in Figure 4. The shape of
the distribution is determined by the requirement of maxi-
mum storage, together with the key constraint that the
synaptic weights are positive. From a maximum at zero
weight, the distribution decays monotonically as a trun-
cated Gaussian. In addition, a large fraction of zero weight
(i.e. silent, or potential) synapses is present. The distri-
bution depends only on two parameters: themean synaptic
www.sciencedirect.com
weight, which fixes the normalisation of the weight axis,
and a parameter, k, which quantifies how robust the
classification is to noise perturbations.

We have described optimal learning as maximising the
number of associations for a fixed resistance to noise k. An
alternative interpretation is that the resistance to noise is
maximised for a given number of learned associations. This
leads to the same optimal weight distribution, and it might
be biologically more plausible, because the neural network
probably does not have control over the number of associ-
ations it is presented with.

Strikingly, this analysis also offers a natural explanation
for theexistence ofa largeproportionof silent synapses: they
are a necessary byproduct of optimal learning in the pre-
sence of the constraint that weights are non-negative (i.e. at
excitatory synapses). As learning proceeds, some active
synapses need to be depressed to avoid erroneous spike
outputs. Repeated depression causes a finite fraction of
synapticweights toaccumulateat zero.Fornon-zerok (noise
resistance), even more synapses must be silenced.

Fitting the theoretical distribution to the experimental
one yields values for several parameters (including activity
levels and resistance to noise). These values can be used to
obtain precise estimates for the storage capacity (�5 kilo-
bytes of information per Purkinje cell in the form of 40,000
input-output associations).



Box 2. Obtaining weight distributions from optimality

principles

Finding a set of synaptic weights that optimises performance of a

task by a neural network is, in general, a difficult problem. One

tractable case consists of a single binary neurone receiving a large

number, N, of binary inputs (‘‘binary’’ refers to the absence or

presence of an action potential; synaptic weights can be contin-

uous). This architecture is known as a perceptron, and a well-studied

task is to learn random input-output associations by modifying

synaptic weights (see Figure 3a). The perceptron learning algorithm

(see e.g. [46]) is a supervised-learning rule that will find a set of

synaptic weights solving this task—provided at least one such set

exists.

A powerful method for analysing the properties of solutions for

the perceptron random association learning problem when the

number of synapses, N, is large was developed by Gardner (1988),

who considered the N-dimensional space representing all possible

configurations of the synaptic weights of the neurone. Typically,

only a finite subspace of this space will satisfy all of the input-output

associations (Figure 3b). As the number of associations to be

satisfied increases, this subspace decreases. The minimum number

of associations causing the subspace to vanish is called the

maximum (or critical) capacity of the perceptron. The power of

Gardner’s approach arises from its adaptability: it has been

extended to incorporate resistance to noise, varying levels of input

and output activity, constrained synaptic weights, and even discrete

synaptic weights [46].

In addition, this approach allows study of generic properties of

synapses of a neurone that has achieved a given storage level, with

a given robustness. In particular, it is possible to compute the

distribution of weights for a system below or at maximum capacity

[12,64]. For synapses with non-negative weights, the distribution at

maximum capacity has two components: a fraction of at least 50%

of the synapses have zero weight – the ‘‘silent’’ or potential

synapses—the exact fraction of which increases with the robust-

ness, k. The remaining synapses (those with positive weights) are

distributed according to the tail of a Gaussian distribution. How the

distribution evolves as a function of the number of stored

associations is shown in Figure 3b.

Figure 2. Distributions of synaptic weights produced by STDP rules when

synapses are subjected to random Poisson inputs. For additive rules (black

curve), the weight change is independent of the current weight. The resulting

distribution is bimodal, with peaks close to zero weight and the maximum allowed

weight. For multiplicative rules (red curve), the synaptic change depends on the

weight, producing a positive equilibrium weight; the distribution obtained is

unimodal, with a peak around the equilibrium weight. Adapted from [26].
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Thus, interpretation of the weight distribution for the
cerebellar granule cell-Purkinje cell synapse by using the
perceptron model explains the existence of a large fraction
of silent synapses and can yield information regarding
several cellular and network properties that would be
difficult to address by direct experimental methods.

Optimality principles for recurrent networks

Remarkably, this distribution of weights derives directly
from the basic assumptions of optimal learning with excit-
atory synapses and is independent of the details of the
learning rule—as long as it is able to attain the maximum
capacity. There might be many other types of excitatory
synapse involved in optimal learning in the brain; thus, it
is natural to ask whether the optimal weight distribution
obtained for the feedforward architecture of the perceptron
could apply to other network topologies, resembling, for
instance, the recurrent excitatory synapses of the neo-
cortex. This might indeed be the case if neocortex is gov-
erned by attractor dynamics in which attractor states are
stored via synaptic plasticity mechanisms [30,31]. The idea
of attractor dynamics is consistent with several experimen-
tal findings on persistent activity in various areas of the
cortex both in vivo [32–34] and in vitro [35,36]. If the
neurones in a given cortical network and a given attractor
state are simply described as being either ‘‘active’’ or
‘‘inactive,’’ a prescribed configuration of neuronal states
persists if each neurone achieves its prescribed state given
the synaptic inputs coming from the other neurones in the
network. In other words, imposing a given number of
attractors in a fully connected recurrent network of binary
www.sciencedirect.com
neurones is equivalent to independently solving a
perceptron problem for each neurone of the network
[37]. When the number of stored attractors, or their resist-
ance to noise (i.e. their basin of attraction), is maximised,
the distribution of synaptic weights is identical to that of
the perceptron at maximum capacity.

The suggestion that synaptic weight distributions for
excitatory synapses between pyramidal neurones could be
similar to the perceptron optimal distribution implies that
an important fraction of the synapses have zero weight.
This is entirely consistent with the reported low prob-
ability (�10%) of detecting a connection between nearby
pyramidal cells. Note that this observation is compatible
with either of the following scenarios: (i) the existence of a
large number of ‘‘potential synapses,’’ i.e. close axonal-
dendritic synapses where synapses could be created by
structural plasticity; or (ii) the existence of a large fraction
of undectectable (silent) synapses. This theory would also
predict that the positive weights are distributed according
to the tail of a Gaussian. This seems to be in contradiction
with the results of Song et al. [38], who have fitted by a
lognormal distribution the weight distribution of recurrent
connections between layer 5 pyramidal cells. The lognor-
mal distribution decays more slowly than the truncated
Gaussian of the perceptron distribution. However, a
slower-than-Gaussian decay could be reconciled with the



Figure 3. Synaptic weights in the perceptron model. (a) Perceptron model. Input patterns of action potentials elicit a compound depolarisation equal to the sum of active

synaptic weights. If this compound depolarisation is greater than the threshold, an action potential is emitted (output active). For some patterns (A), the output neurone

should be active; for others (B), it should remain inactive. Ensuring appropriate outputs for all input patterns requires adjusting weights accordingly. To impart resistance to

noise, learned inputs should never sum closer to threshold than k. Adapted from [12]. (b) Left: schematic two-dimensional representation of the N-dimensional space of

synaptic weight configurations showing how learning associations restrict the space that satisfies all of the input-output associations (white region). Arrows indicate a

possible trajectory of the set of weights subjected to a learning rule that tries to satisfy the constraints imposed by increasing numbers of associations. Right: corresponding

synaptic weight distributions. When few associations have been learned, the distribution is exponential (top, dotted curve); middle, as the number of associations

increases, the distribution stretches, with more synapses assuming very small and very large values (dashed curve); bottom, at maximum capacity, the available space of

weights vanishes, and the distribution is composed of a delta function at zero (marked schematically as the thick, black line) and a truncated Gaussian (full line). For further

details, see [12].

Figure 4. Comparing experimental and theoretical weight distributions. Granule

cell-Purkinje cell synaptic weight distribution (grey histogram); the shaded bin

close to zero shows the estimated number of silent synapses. The inset shows in

more detail the parts of the distributions with non-zero weight. The solid line

represents the best-fit optimal distribution of weights for a binary perceptron

model that learns to classify random inputs into two classes. Adapted from [12].
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above-described theoretical framework by a suitably
nonlinear summation of inputs, or if the network stores
a number of attractors that is lower than its theoretical
limit [12].

Optimality criteria other than attractor maximisation
have also been invoked to rationalise the large proportion
of potential synapses in cortex. Assuming that synapses
are binary and can take only two values (zero and some
positive arbitrary value), the ‘‘information capacity’’’of
a circuit (defined as the logarithm of the number of
possible realisable circuits) can be easily computed as
a function of the ‘‘filling fraction,’’ c (the ratio of the
number of actual synapses to the total number of poten-
tial and actual synapses) [16]. This capacity is maximised
when the filling fraction is c = 0.5. However, the infor-
mation capacity per synapse increases monotonically
when c decreases, indicating that, when the cost of
maintaining positive synapses is taken into account,
the optimal filling fraction should be small. In addition,
synapse cost, together with optimal storage in the pre-
sence of noise, has recently been proposed as a justifica-
tion for the wide distribution of synaptic weights in
neocortex [39].

To summarise, theoretical analysis has shown how
various features of the weight distributions can be under-
stood through optimality principles. These theories can
be applied to both the feedforward circuitry of the cerebel-
lum and recurrent networks resembling the neocortex.
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However, further work undoubtedly needs to be done to
determine which quantity, if any, is optimised in these
areas.

Open issues
These initial analyses of the link between weight distri-
butions and learning tasks open several avenues for future
research; we discuss some of them here.

Experimental testing of the link between optimal

learning and the distribution of synaptic weights

Analysis of synaptic weight distributions can test learning
theories and offer access to difficult-to-obtain information,
such as the storage capacity of a neurone. However, these
analyses would obviously be strengthened by a direct
demonstration that the distribution shape was indeed
linked to (optimal) learning. The most promising approach
would be to compare distributions when different
quantities of information have been stored. One obvious
idea is to compare distributions from immature and ma-
ture animals, although this might be confounded by con-
current developmental processes. Another possibility
would be to compare distributions from animals raised
in feature-poor and -enriched environments; presumably,
the latter would have learned more. Finally, chronic
pharmacological or genetic interventions might allow
manipulation of specific model parameters (e.g. activity
or noise levels) and testing of their expected effects on
distribution shape.

Discrete versus analogue synapses

It is generally implicitly assumed that single synapses can
be characterised by a continuous weight variable, which
seems consistent with the continuous distributions
reported in Box 1. However, the distributions are also
consistent with a scenario in which each synapse has only
a discrete set of possible values, but with these values
differing between synapses. Some experiments actually
suggest that single synapses could have discrete weights
or even be binary [40–42]. However, this issue is far from
settled experimentally and will require further studies of
plasticity at unitary synapses.

Mode of synaptic integration

The theoretical analyses of optimal synaptic weight distri-
butions have assumed a relatively simple mode of synaptic
integration of the cell—linear summation of synaptic
inputs, followed by a threshold for spike emission. The
complex geometry of dendritic trees of pyramidal cells,
together with the potential nonlinearities inherent in
the dynamics of various intrinsic and synaptic currents,
have led investigators to propose a radically different view,
in which linear summation is performed only locally, at the
dendritic level [43,44]. A threshold is then applied to these
local compound synaptic inputs. Finally, the resulting
dendritic outputs are summed linearly at the soma, and
a second threshold applied. Interestingly, such a model
bears similarities with multilayer perceptrons, which are
known to havemore powerful learning abilities that single-
layer perceptrons [45]. The optimal distribution of weights
for such single-neurone models remains to be determined.
www.sciencedirect.com
More precise information on synaptic integration in
different cell types would also be desirable.

Learning rules leading to optimal performance

Wehave discussed above how one can obtain themaximum
capacity of a simple neuronalmodel as well as the resulting
distribution of weights at maximum capacity. But, which
learning rules are able to reach this maximum capacity?
An answer to this question would connect optimality con-
ditions to the more mechanistic approach relying on a
particular synaptic plasticity rule. Learning rules that
can reach the optimum are known to exist when weights
are continuous. In particular, the ‘‘perceptron algorithm’’
[46] converges in a finite number of learning steps if a
solution exists. This algorithm implements supervised
learning by combining local information, available at the
synapse, with global information provided by a ‘‘teacher.’’ A
learning step is performed if, and only if, the cell output is
different from the desired output. How this error signal
might be provided to real cells is generally not clear. In the
case of Purkinje cells, climbing fibres are supposed to carry
the error information [29], but this issue remains contro-
versial [47]. Determining the degree and source of any
supervision thus remains an important issue for future
study.

The perceptron learning algorithm can be adapted to
the case of sign-constrained synapses [48]. In the case of
discrete synapses, however, reaching the maximum
capacity is much harder. A recently proposed algorithm
comes close to this maximum capacity [49]. Finally,
whereas algorithms exist for which learning is guaranteed
below the maximum storage capacity, they do not perform
well when that capacity is exceeded. Some learning rules
forget oldmemorieswhile storing new information [50–52].
However, no such algorithm is known to lead to optimal
performance. Theories of graceful and optimal forgetting
therefore also require further study.

Inhibitory synapses

We have focused here on excitatory synapses. A funda-
mental and still-open question is related to the asymmetric
functions of excitation and inhibition. Inhibition is known
to play an important role in the organisation of activity
[53]. In addition, plasticity of inhibitory circuits [14,54,55]
suggests that they are also involved in learning. One could
expect that if inhibitory synapses are also plastic, the same
type of distribution would emerge for inhibitory synapses
at maximum capacity (large fraction of silent/potential
synapses, monotonically decaying distribution). However,
this issue remains to be clarified.

Conclusion
We have discussed here how various approaches lead to
specific predictions for the distribution of synaptic weights.
In our view, the most powerful approaches are those that
consider optimal performance of the considered system,
because no hypothesis needs to be made about the details
of the plasticity rule, apart from the fact that it is able to
reach the optimum. Such approaches also have the
advantage of providing access to quantities such as storage
capacity, which are currently beyond experimental reach.
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Important challenges remain, including elucidating and
experimentally testing what is optimised in a given task,
as well as determining learning rules leading to optimal
performance, given biophysical constraints acting at the
level of single synapses. Despite such open questions, the
analysis of weight distributions has the potential to
become a powerful tool for studying the mechanisms of
learning in the brain.
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