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Definition:  A topological space X is said to be 0T  (or a Kolmogorov space) if given any two distinct points 

,x y X∈ , there is an open subset of X containing least one point which does not contain the other.  A 

topological space X is said to be 1T  (or a Frechet space) if given any two distinct points ,x y X∈ , there is 
an open subset of X containing x which does not contain y and an open subset of X containing y which does 
not contain x. 
 
Well-Known Theorems: 
• Every 1T -space is a 0T -space.  (proven) 

• A topological space X is 0T  if and only if given any two distinct points x and y of X, either { }x y∉  

or { }y x∉ .  (proven) 

• A topological space X is 0T  if and only if distinct one-point subsets of X have distinct closures.  
(proven) 
• The property of being a 0T -space is a topological property.  (proven) 

• The property of being a 1T -space is a topological property.  (proven) 

• A topological space is 1T  if and only if every single-point set is closed.  (proven) 

• A topological space is a 1T -space if and only if every subset is the intersection of all the open sets 
containing it. (proven) 
• A subspace of a 0T -space is 0T .  (proven) 

• A subspace of a 1T -space is 1T .  (proven) 

• A product of nonempty 0T -spaces is 0T  if and only if each component space is 0T .  (proven)  

• A product of nonempty 1T -spaces is 1T  if and only if each component space is 1T .  (proven) 

• Every metric space is 1T  (and therefore 0T ).  (proven) 

• If A is a subset of a 1T -space X, then x is a limit point of A if and only if every open set containing 
x contains infinitely many points of A.  (proven) 
• If A be a subset of a 1T -space X, and x A∈  with x A∉ , then every open subset of X containing x 
contains infinitely many points of A.  (proven) 
• The only topology on X which makes X into a 1T -space is the discrete topology.  (proven)    

• If X is a 1T -space and xB  is a local basis at x X∈ , then for every y X∈  distinct from x, there is 

some member of xB  that does not contain x.  (proven) 

• If X is a first countable 1T -space, and A is a subset of X, and p X∈  is a limit point of A, then 
there exists a sequence of distinct terms in A that converges to p.  (proven) 
• A pseudometric space ( , )X d  is a metric space if and only if it is a 0T -space.  (proven) 

• A quasimetric space is a 1T -space.  (proven) 

• A 1T -space with a finite basis for its topology is finite and has the discrete topology.  (proven) 

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com

http://www.docudesk.com


•   
•  
 
 
Minor Theorems:  
• Given a space X, define ∼  by x y∼  iff { } { }x y= .  Then the resulting quotient space /X ∼  is 0T .  
(proven) 
• A subset A of a 1T -space is countably compact if and only if every countable open cover of A has a 
finite subcover.  (proven) 
• If X has any particular point topology, then X is a 0T -space.  (proven) 

• Let X be a topological space and define a relation R on X by setting ( , )x y R∈  if and only if 

{ }x y∈ .   Then R is reflexive and transitive, and R is a partial order relation if and only if X is a 0T -space.  
(proven) 
•    
•  
 
  
 
Major Theorems: 
 
1. (Conover, p.162)   Prove that every 1T -space is a 0T -space. 
 

Let X  be a 1T -space.  Let ,x y X∈  be two distinct points.  There is an open subset of X containing 
x which does not contain y and an open subset of X containing y which does not contain x.  In particular, 
there is an open subset of X containing least one point which does not contain the other.  ■   
  
 
 
2. (Gemignani, p.92)  Give an example of a space that is not 0T , and an example of a 0T -space that is 

not 1T .  
 

Let X be any set with more than one points.  Give X the trivial topology, i.e. { , }X ∅ .  Then for any 

distinct points ,x y X∈ , the only open set containing either point is X and so there is no way to separate x 

from y or y from x.  Thus X is not 0T .   

Another example of a non 0T -space is a pseudometric space (where a pseudometric is a function 
satisfying the axioms of a metric except two distinct points may have zero distance).  Let x and y be two 
distinct points of a pseudometric space ( , )X d  such that ( , ) 0d a b = .  Then since any d-open ball (and 
therefore any neighbourhood) of a contains b and any d-open ball (and therefore any neighbourhood) of b 
contains a.  Thus a and b cannot be separated and so X is not 0T . 

Let { , }X x y=  and X is given the topology { },{ },X x ∅ , then X is a 0T -space since ,x y  are the 

only pair of distinct points in X and { }x x∈  and { }x  does not contain y, but X is not a 1T -space since there 
is no open set containing y that does not contain x.    

Another example a 0T -space that is not 1T  is a topological space with a particular point topology 
(see problem 24).  ■  
 
 
  
3. (Gemignani, p.92)  Prove that if x and y are two distinct points of a topological space X, then every 
open set which contains either x or y contains both if and only if 
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{ } { }x y= . 
 
⇒  Suppose x and y are two distinct points of a topological space X and every open set which contains 

either x or y contains both.  Let { }z x∈ .  Then every open subset U of X containing z intersects { }x , i.e. 

contains x.  But { } { }x x y∈ = , so that U containing x means that U intersects { }y . Thus every open set 

containing z intersects { }y , and thus { }z y∈ .  Thus { } { }x y⊂ .  By the symmetric roles of x and y, we also 

have { } { }y x⊂ .  Thus { } { }x y= . 

⇐  Suppose { } { }x y= .  Since { } { }x x y∈ = , then every open subset of X containing x intersects { }y , 

i.e. contains y, and similarly, { } { }y y x∈ =  so that every open subset of X containing y contains x.  ■ 
 
    
4. (Gemignani, p.92)  Prove a topological space X is 0T  if and only if given any two distinct points x 

and y of X, either { }x y∉  or { }y x∉ . 
 

⇒  Suppose X is 0T .  Let x and y be two distinct points of X.  Assume that { }x y∈  and { }y x∈ .  Then 

{ } { } { }x y y⊂ =  and { } { } { }y x x⊂ = , and so { } { }x y= .   By problem 3, every open set which contains 

either x or y contains both x and y, contradicting the assumption that X is 0T .  Thus we must have either 

{ }x y∉  or { }y x∉ . 

⇐  Suppose that given any two distinct points x and y of X, either { }x y∉  or { }y x∉ .  Since { }x x∈  

and { }y y∈ , then we have { } { }x y≠ .  Thus by Proposition 1, there exists an open set that contains x and 

not y (or vice versa).  Thus X is 0T .  ■ 
 
  
 
5. (Gemignani, p.94 #8)  Prove a topological space X is 0T  if and only if distinct one-point subsets of 
X have distinct closures. 
 

⇒  Suppose X is 0T .  Let x and y be two distinct points of X.  Suppose { } { }x y= .  Then by 
Proposition 1, every open set which contains either x or y contains both x and y, contradicting the 

assumption that X is 0T .  Thus we must have { } { }x y≠ . 

⇐  Suppose that given any two distinct points x and y of X, we have { } { }x y≠ .  Then by problem 3, 

there exists an open set that contains x and not y, or an open set that contains y and not x.  Thus X is 0T .  ■ 
 
 
  
6. (Schaum’s, p.143)  Prove that a topological space X is 1T  if and only if every finite subset of X is 
closed.  
 
⇒  Suppose X is a 1T -space.  We shall prove that every single-point set is closed, or that equivalently 

its complement is open, and the result will follow.  Let x X∈  and let { }y X x∈ − .  Since X is a 1T -space, 

and x y≠ , then there exists an open set yU  such that yy U∈  but yx U∉ .  Consequently, 

{ }
{ } y

y X x
X x U

∈ −
− = ∪  

is a union of open sets and hence is open.  Thus { }x  is closed.  Consequently, every finite subset of X is a 
finite union of closed sets and hence is closed. 
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 Gemignani proves that { }x  is closed by proving that { } { }x x= :  Firstly, { } { }x x⊂  by definition of 

closure.  Let { }y x∈ .  Then every open set containing y intersects { }x , i.e. contains x.  Thus we must have 

y x= , otherwise x and y could not be separated by open sets, contradicting that X is 1T .  Thus { } { }x x⊂ , 

so { } { }x x= , and thus { }x  is closed. 

⇐  Suppose every finite subset of X is closed.  Then in particular every single-point set is closed.  Let 
x and y be two distinct points in X.  Then { }X x−  is an open set containing y but not x, and { }Y y−  is an 

open set containing x but not y.  Thus X is a 1T -space. 

Gemignani uses closures again:  Suppose every single-point set is closed.  Then { } { }x x=  for all 

x X∈ .  Let x and y be two distinct points in X.  If every open set containing x also contains y, i.e. intersects 

{ }y , then { }x y∈ .  But { } { }y y= , so x y= , a contradiction.  Thus there must be an open set containing x 

but not y.  Similarly, there must be an open set containing y but not x.  Thus X is a 1T -space.  ■ 
 
 
7. (Willard, p.86)  Prove that X is a 1T -space if and only if every subset of X is the intersection of all 
the open sets containing it.  
 
⇒  Suppose X is a 1T -space.  Let A be a subset of X.  Then { }

x A
X A x

∉
− = ∪ , and so by DeMorgan’s 

Law, we have 
( { })

x A
A X x

∉
= −∩ , 

which precisely the intersection of all sets containing.  Furthermore, since X is a 1T -space, then every 
single-point set is closed by problem 6, and thus the complements of single-point sets are closed.  Thus 

( { })
x A

A X x
∉

= −∩  is the intersection of the open sets containing it.  

⇐  Suppose every subset of X is the intersection of all the open sets containing it.  Let x X∈ .  Then 
{ }x  is the intersection of all the open sets containing x.  Let y X∈  be any point distinct from x.  If every 

open set containing x also contains y, then the intersection of all those open sets would contain { , }x y , 

contradicting the assumption that the intersection of all the open sets containing x is { }x .  Thus there must 
be an open set containing x but not y.  Similarly, by the symmetric roles of x and y, we conclude that there 
must be an open set containing y but not x.  Thus X is a 1T -space.  ■ 

 
 
  
8. (Milewski, p.504)  Prove that the property of being a 1T -space [ 0T -space] is a topological 
property, that is, it is invariant under homeomorphisms. 
 

Let X be a 1T -space [ 0T -space], and let :f X Y→  be a homeomorphism.  Let ,x y Y∈  be two 

distinct points in Y.  Then there exist ,a b X∈  such that ( )f a x=  and ( )f b y∈ .  Then there exist open 

subsets U and V of X such that ,a U b U∈ ∉  and [or] ,b V a V∈ ∉ .  Since f is an open map, then ( )f U  is 

an open subset of Y containing ( )f a x=  and [or] ( )f V  is an open subset of Y containing ( )f b y= .  

Furthermore, since f is bijective, then ( ) ( )y f b f U= ∉  and [or] ( ) ( )x f a f V= ∉ .  Thus Y is a 1T -space 

[ 0T -space].  ■ 

 Note that continuity of f is not enough (nor needed) to ensure that Y is a 1T -space [ 0T -space].  

Only the surjectivity of f and the continuity of 1f −  are needed. 
 
Milewski’s proof that being 1T  is a topological invariant: 
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 Let X be a 1T -space, and let :f X Y→  be a homeomorphism.  Let y Y∈ .  Since f is bijective, 

then 1({ })f y−  is a one-point set, and therefore a closed subset of X by problem 6.   The surjectivity of f 

means that 1( ({ })) { }f f y y− = , which is a closed subset of Y since f is a homeomorphism and hence a 

closed map.  Thus all single-point sets in Y are closed and so Y is a 1T -space.  ■  
 
 
 
9. (Gemignani, p.94 #6b)  Prove that a subspace of a 0T -space is 0T .  
 

Let X be a 0T -space and let Y be a subspace of X.  Let a and b be two distinct points in Y.  Since X 

is a 0T -space, then there exists an open set U such that ,a U b U∈ ∉  or an open set V such that 

,b V a V∈ ∉ .  Consequently, we have either ,a U Y b U Y∈ ∉∩ ∩  or ,b V Y a V Y∈ ∉∩ ∩ .  Since 

U Y∩ and V Y∩  are open subsets of Y in its subspace topology, then consequently Y is a 0T -space.  ■ 
 

 
  
10. (Schaum’s, p.143)  Prove that a subspace of a 1T -space is 1T . 
 
First solution (by me): 

Let X be a 1T -space and let Y be a subspace of X.  Let a and b be two distinct points in Y.  Since X 

is a 1T -space, then there exists open sets U and V such that ,a U b U∈ ∉  and ,b V a V∈ ∉ .  Consequently, 

we have ,a U Y b U Y∈ ∉∩ ∩  and ,b V Y a V Y∈ ∉∩ ∩ .  Since U Y∩ and V Y∩  are open subsets of Y in 

its subspace topology, then consequently Y is a 1T -space.  ■ 
 

Alternate solution (by Schaum’s): 
 Let X be a 1T -space and let Y be a subspace of X.  Let y Y∈ .  By problem 6, { }X y−  is a closed 

subset of X.  Then ( { })X y Y− ∩  is a closed subset of Y (in its subspace topology).  But  

( { }) { } { }X y Y X Y y Y Y y− = − = −∩ ∩ ∩ . 

Thus { }Y y−  is a closed subset of Y and so Y is a 1T -space.  ■ 
 
 
 
11. (Gemignani, p.94 #6c)  Prove that a product of nonempty 1T -spaces [ 0T -spaces] is 1T  [ 0T ] if and 

only if each component space is 1T  [ 0T ].  
 
⇒  Suppose ii I

X
∈
Π  is 1T  [ 0T ] (where ii I

X
∈
Π  is given either the product topology or box topology).  

Given i I∈ , let ia  and ib  be two distinct points in iX  (possible since each iX  is not empty).  Let a and b 

be two points in ii I
X

∈
Π  where the thi  component of a and b are ia  and ib , respectively, and all other 

components of a and b are equal.  Then a b≠  and so, since ii I
X

∈
Π  is 1T  [ 0T ], there exists an open subset U 

of ii I
X

∈
Π  containing a but not b, and [or] an open subset V of ii I

X
∈
Π  containing b but not a.  Furthermore 

there exist basis elements aB  and bB  (for the topology of ii I
X

∈
Π ) such that aa B U∈ ⊂  and bb B V∈ ⊂ .  

Therefore aB  contains a but not b, and [or] bB  contains b but not a.  Now basis elements in ii I
X

∈
Π  are of 

the form a kk I
B U

∈
= Π , b kk I

B V
∈

= Π , where the kU  and kV  are open subsets of kX  (and k kU X=  and 

k kV X=  for all but finitely many values of k I∈  if ii I
X

∈
Π  is given the product topology, but that’s not 
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important in this proof).  Since a and b only differ in their thi  component, then aB  and [or] bB  can only 

separate a and b if iU  contains a but not b, and [or] iV  contains b but not a.  Thus iX  is 1T  [ 0T ].  Since 

i I∈  was arbitrary, then iX  is 1T  [ 0T ] for all i I∈ . 

⇐  Suppose jX  is 1T  [ 0T ] for all j I∈ .  Let ( )j j Ix ∈  and ( )j j Iy ∈  be two distinct points in ii I
X

∈
Π , 

where ii I
X

∈
Π  is given either the product topology or box topology.  Then for some coordinate i I∈ , we 

have i ix y≠ .  But iX  is 1T  [ 0T ], and so there exist disjoint open sets U and [or] V of iX  such that U 

contains ix  but not iy , and [or] V contains iy  but not ix .  Then 1( )i Uπ −  and 1( )i Vπ −  are open subsets of 

ii I
X

∈
Π  (in either the product topology or box topology) such that 1( )i Uπ −  contains x but not y, and [or] 

1( )i Vπ −  contains y but not x.  Therefore ii I
X

∈
Π  is 1T  [ 0T ].  ■ 

 
 
 
12. (Milewski, p.501)  Prove that every metric space is 1T  (and therefore 0T ).  
 
First solution (by me):   

Every metric space is Hausdorff (proven in the Hausdorff Spaces chapter), and therefore 1T  and 

0T .  But we’ll give a direct proof here.  Let x and y be two distinct points of a metric space ( , )X d .  Then 

( , ) 0d x y r= > .  Consequently, ( , )dB x r  contains x but not y and ( , )dB y r  contains y but not x.  Thus X is 

a 1T -space.  ■ 

Of course, using 1
2 ( , )r d x y=  would prove that X is Hausdorff.  It also turns out that X is also 

normal in addition to 1T , and hence is a 4T -space. 
   
Second solution (Milewski): 
 In a metric space, the condition of a set A to be closed is that if lim nn

x x
→∞

= , where nx A∈  for all 

n +∈ℤ , then x A∈  (i.e. A contains all its limit points).  Let a A∈ .  Since a is the only element of { }a , 

and clearly lim
n

a a
→∞

= , and { }a a∈  by definition of closure, then { }a  is closed.  Thus all single-point sets 

in A are closed and so A is a 1T -space.  ■ 
 
 
  
13. (Munkres, p.99)  Prove that if A is a subset of a 1T -space X, then x is a limit point of A if and only 
if every open subset of X containing x contains infinitely many points of A. 
 
 If every neighbourhood of x contains infinitely many points of A, then it contains at least two 
points of A and so contains at least one point of A other than x itself,  and so x is a limit point of A.   
 Conversely, suppose that x is a limit point of A.  Assume there exists an open subset U of X 
containing x that intersects A in only finitely many points.  Then U also intersects { }A x−  at finitely many 

points, say at the points 1,..., nx x .  Since X is a 1T -space, then 1{ ,..., }nx x  is closed by problem 6.  
Consequently,  

1 1{ ,..., } ( { ,..., })n nU x x U X x x− = −∩  
is the intersection of two open sets and hence is an open set (containing x).  Since U intersects A only at 

1,..., nx x  or at 1, ,..., nx x x , then 1{ ,..., }nU x x−  is an open subset of X containing x that does not intersect A 
at any point except (possibly) at x.  This contradicts the assumption that x is a limit point of A.  Thus every 
open set containing x intersects A at infinitely many points.  ■ 
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14. (Milewski, p.503)  Let X be a finite set.  Prove that the only topology on X which makes X into a 

1T -space is the discrete topology.   
 

Let X be a finite 1T  space.  Then every finite subset of X is closed by problem 6.  Since X is a finite 
set, then every subset of X is closed, which means that every subset of X is open.  Thus X has the discrete 
topology.  ■   
 
 
 
15. (Schaum’s, p.143)  Show that a finite subset of a 1T -space X has no accumulation points.   
 
First solution (by me): 

Let 1{ ,..., }nA a a=  be a finite subset of a 1T -space X.  We show that every point in A is not a limit 

point.  Let ia A∈ .  Since X is a 1T -space, then for all j i≠ , there exists an open subset jU  of X containing 

ia  such that j ja U∉ .  Let j
j i

U U
≠

= ∩ , which is an open set since it is the intersection of 1n −  open sets.  

Now U does contains ia  but U does not contain any other point in A, since if ka U∈  for some k i≠ , then 

k j k
j i

a U U
≠

∈ ⊂∩ , a contradiction.  Thus ia  is not a limit point.  Thus A contains no limit point.  ■ 

 
Second solution (by Schaum’s): 
  Let 1{ ,..., }nA a a=  be a finite subset of a 1T -space X.  The subset 1 1 1{ ,..., , , }i i na a a a− +  is a finite 

subset of X for any i, and thus is a closed subset of X by problem 6.  Consequently, 1 1 1{ ,..., , , }i i nX a a a a− +−  

is an open subset of X, and since it contains ia  and no other point of A, then ia  is not a limit point of A.  
Thus A has no limit point.  ■ 
 
Third solution (by me): 

By problem 0, then x is a limit point of X if and only if every open set containing x contains 
infinitely many points of X, which is not possible since A has only finitely many points.  Thus A has no 
limit point.  ■ 
 
 
 
16. (Schaum’s, p.144)  Let X be a 1T -space and xB  a local basis at x X∈ .  Prove that for every 

y X∈  distinct from x, there is some member of xB  that does not contain x.  
  

Since x y≠ , and X be a 1T -space, then there exists an open set U containing x but not y.  

Consequently, there is a local basis element xB ∈B  such that x B U∈ ⊂  and so B does not contain y.  ■ 
 
 
 
17. (Schaum’s, p.144)  Let X be a first countable 1T -space and let A be a subset of X.  Show that if 

p X∈  is a limit point of A, then there exists a sequence of distinct terms in A that converges to p. 

 
Since X is first countable, there exists a nested local basis { | }nB n += ∈B ℤ  at x X∈ .  Set 

1 1iB B= .  Since x is a limit point of A, then 
1i

B  contains a point 1a A∈  different from x.  Since X is a 1T -

space, then by problem 16, there exists 
2i

B ∈B  such that 
21 ia B∉ .  Similarly 

2i
B  contains a point 2a A∈  
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different from x and, since 
21 ia B∉ , different from 1a .  Again, by problem 16, there exists 

3i
B ∈B  such 

that 
32 ia B∉ .  Furthermore, 

22 ia B∈  and 
32 ia B∉  means that 

3 2i iB B⊂ .   

Continuing in this manner we obtain a sequence 
1 2

{ , ,...}i iB B  of B and a sequence 1 2{ , ,...}a a  of 

distinct terms in A with 
nn ia B∈  and 

1n ni iB B
+

⊂   for all n +∈ℤ .  Then for any open set U containing x, 

there exists nB ∈B  such that nx B U∈ ⊂ , and consequently some 
mi

B  such that 
mi nx B B U∈ ⊂ ⊂ .  

Therefore we have 
mk ia B U∈ ⊂  for all k m≥ .  Thus the sequence 1 2{ , ,...}a a  converges to x.  ■ 

  
 
 
18. (Adamson, p.45)  Let X be a 1T -space.  Let A be a subset of X and let x A∈ .  Prove that if x A∉ , 
then every open subset of X containing x contains infinitely many points of A.  
 
First solution (by Adamson): 

Suppose there exists an open subset U containing x that intersects A at finitely many points, say at 

1,..., na a .  Since x A∉ , then none of these points are x.  Since X is 1T , then by problem 16, there exist basis 

elements 1,..., nB B  for the topology of X containing x such that i ia B∉  for all 1,...,i n= .  Then 
1

( )
n

i
i

B U
=
∩ ∩  

is an open subset of X (since n is finite) containing x that does not contain any of the points 1,..., na a , since 

1
( )

n

k i
i

a B U
=

∈ ∩ ∩  for some k means that 
1

n

k i k
i

a B B
=

∈ ⊂∩ , a contradiction.  But 
1

( )
n

i
i

B U U
=

⊂∩ ∩ , and U only 

intersects A at the points 1,..., na a .  Thus 
1

( )
n

i
i

B U
=
∩ ∩  does not intersect A at all.  But since x A∈ , every 

open subset of X containing x intersects A.  This contradiction means that every open subset of X containing 
x must contain infinitely many points of A.  ■ 
 
Second solution: 

Suppose there exists an open subset U containing x that intersects A at finitely many points, say at 

1,..., na a .  Since x A∉ , then none of these points are x.  Since X is a 1T -space, then 1{ ,..., }na a  is closed by 
problem 6.  Consequently,  

1 1{ ,..., } ( { ,..., })n nU a a U X a a− = −∩  
 is the intersection of two open sets and hence is an open set (containing x).  Since U intersects A only at 

1,..., na a , then 1{ ,..., }nU a a−  is an open subset of X containing x that does not intersect A at all, 

contradicting the fact that x A∈ .  Thus every open set containing x intersects A at infinitely many points.  
■ 
 
  
 
19. (Adamson, p.44)  Prove ( , )X d  be a pseudometric space, where a pseudometric is a function that 

satisfies the axioms of a metric except two distinct points may have zero distance.  Prove that X is a 0T -
space if and only if d is a metric. 
 
⇒  Suppose ( , )X d  is a 0T -space.  Let x and y be two distinct points in X.  Since X is a 0T -space, 

there exists an open set U that either contains x but not y, or contains y but not x.  So assume x U∈  but 
y U∉ .  Then there exists 0ε >  such that ( , )dx B x Uε∈ ⊂ .  Thus ( , )dy B x ε∉  so that ( , ) 0d x y ε> > .  

Thus d, together with the pseudometric properties, is a metric.   
 Adamson:  If d is not a metric, then there exist two distinct points x and y such that ( , ) 0d x y = .  

Then for any 0ε > , we have ( , )dx B y ε∈  and ( , )dy B x ε∈ .  Thus any basis element for the topology of X 
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that contains one point also contains the other.  Thus X cannot be a 0T -space.  This contradiction means 
that d must be a metric. 
⇐  Suppose that d is a metric.  Then ( , )X d  is a metric space and hence is a 0T -space by problem 12.  
■ 
 
 
   
20. (Adamson, p.45)  Prove that a quasimetric space is a 1T -space, where a quasimetric is a function 
that satisfies the axioms of a metric except the symmetry property of a metric.  
 

Let ( , )X d  be a quasimetric space.  Let x and y be two distinct points in X.  Then ( , ) 0r d x y= >  

and ( , ) 0s d y x= > .  Thus ( , ) { | ( , ) )dB x r z X d x z r= ∈ <  is an open set containing x but not y, and 

( , ) { | ( , ) )dB y q z X d y z s= ∈ <  is an open set containing y but not x.  Thus X is a 1T -space.  ■ 
 Note:  Not all quasimetric spaces are Hausdorff, and Adamson provides a counterexample in 
problem 144. 
 
  
21. (Adamson, p.45).  Let X be a 1T -space with a finite basis for its topology.  Prove that X is finite 
and has the discrete topology. 
 
   Let 1{ ,..., }nB B=B  be a finite basis for X.  Let x X∈ .  Then there exists 

1i
B ∈B  such that 

1i
x B∈ .  If 

1
{ }iB x≠ , then choose a point 1x x≠  such that 

11 ix B∈ .  Since X is 1T , then there exists an open 

set U containing x but not 1x .  Since 
1i

U B∩  is open subset of X containing x, then there exists 
2i

B ∈B , 

such that 
2 1

( )i ix B B U∈ ⊂ ∩ .  Then 
2i

x B U∈ ⊂ , so 
21 ix B∉ .  If 

1
{ }iB x≠ , then we may repeat this 

process, so obtaining a strictly decreasing sequence of basic open sets.   
Since B is finite, then this process must stop with 

1 1k ki i ix B B B
−≠ ≠ ≠

∈ ⊂ ⊂ ⊂⋯ .  If { }
ki

B x≠ , then we 

can choose 
kk ix B∈  distinct from x and then there must exist an open set V containing x but not kx , and so 

(by definition of B being a basis) there must exist 
1ki

B
+

∈B  such that 
1

( )
k ki ix B B V

+
∈ ⊂ ∩ , and thus 

1 1k ki i ix B B B
+ ≠ ≠ ≠

∈ ⊂ ⊂ ⊂⋯  and the process is continuing, a contradiction.  Thus we must have { }
ki

B x= .  Thus 

{ }x  is an open subset of X.  Since x was an arbitrary point in X, then X has the discrete topology.  

Furthermore, since B is finite, and { }{ } |x x X∈ ⊂ B , then X must be finite.  ■ 

 
 
 
22.   
23.   
  
  
 
 
Minor Theorems: 
 
24. (Adamson, p.43)  Prove that if X has any particular point topology, then X is a 0T -space, where the 

particular point topology corresponding to 0x X∈  is defined by  

0 0{ ( ) | } { }x U X x U= ∈ ∈ ∅T P ∪ . 

Furthermore, show that X is not a 1T -space (if X has more than one point). 
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 If X does not have more than one point, then the 0T  property of X is vacuously true.  Otherwise, let 

,x y X∈  be two distinct points in X.  If either of these two points is 0x , say 0x x= , then 0{ }x  is an open 

set containing x but not y.  If none of x and y are 0x , then 0{ , }x x  is an open set containing x but not y (and 

0{ , }x y  is an open set containing y but not x, though this is not needed).  Thus X is a 0T -space. 

 Now if X has more than one point, then for any 0x x∉ , any open set containing x must contain 0x , 

and thus X is not a 1T -space.  ■ 
 
 
 

25. (Adamson, p.43-44)  Given a space X, define ∼  by x y∼  iff { } { }x y= .   
a) Prove that ∼  is an equivalence relation. 
 

Reflexivity:  Let x X∈ .  Then { } { }x x=  so x x∼ . 

Symmetry:  Suppose x y∼ .  Then { } { }x y= , so { } { }y x= .  Thus y x∼ . 

Transitivity:  Suppose x y∼  and y z∼ .  Then { } { }x y=  and { } { }y z= .  Thus { } { } { }x y z= =  so x z∼ . ■ 
 
b) Prove that the canonical surjection : /q X X→ ∼  is an open map.  
  
 Let U be an open subset of X.  We claim that 1( ( ))q q U U− = , from which the result follows since 

q is a quotient map.  Now 1( ( ))U q q U−⊂  already holds from elementary set theory (with equality holding 
if q is injective—but since q is not injective, we must show the reverse inclusion directly).  Let 

1( ( ))x q q U−∈ .  Then ( ) ( )q x q U∈  so that ( ) ( )q x q y=  for some y U∈ .  Then x y∼  so { } { }x y=  by 

definition of ∼ .  Thus { } { }y y x∈ = , so that every open subset of X containing y intersects { }x , i.e. 

contains x.  In particular, U contains y and thus also contains x.  Thus x U∈  so that 1( ( ))q q U U− ⊂ .  

Therefore 1( ( ))q q U U− = .  Since U is a quotient map, then ( )q U  must be an open subset of Y.  Thus q is 
an open map.  ■ 
 
c) Prove that the resulting quotient space /X ∼  is 0T .   
 

Let [ ] ( )x q x=  and [ ] ( )y q y=  be two distinct points in /X ∼ .  Then x y/∼  and thus { } { }x y≠ .  
By problem 5, there exists an open subset of X that contains x and not y, or contains y or not x.  So assume 
U is an open subset of X such that x U∈  and y U∉ .  By part (b), ( )q U  is an open subset of /X ∼  

containing ( ) [ ]q x x= .  We shall show that ( )q U  does not contain [ ]y .  Suppose [ ] ( )y q U∈ .  Then 

( ) [ ] ( )q y y q z= = , for some z U∈ .  Then y z∼  so { } { }y z= .  Thus { } { }z z y∈ = , so that every open 

subset of X containing z intersects { }y , i.e. contains y.  But z U∈  and y U∉ , a contradiction.  Thus ( )q U  

is an open subset of /X ∼  that contains [ ]x  but does not contain [ ]y .  Thus /X ∼  is a 0T -space.  ■  
 
   
 
26. (Conover, 162)   Prove that a subset A of a 1T -space is countably compact if and only if every 
countable open cover of A has a finite subcover.  
 
Proof by Morphism: 
⇒  Let A be a countably compact subset of a 1T -space X.  If A is finite, then clearly every countable 
open cover of A has a finite subcover by taking one member of the open cover to cover each point of A.  So 
assume A is infinite.  Let 1 2{ , ,...}U U=U  be a countable cover of A.  Suppose no finite subcollection of U 
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covers A.  Then there exists a point 1a  in A that is not covered by 1{ }U  (since 1{ }U  cannot cover A), a 

point 2a  (different from 1a ) in A that is not covered by 1 2{ , }U U  (since 1 2{ , }U U  cannot cover A), …, and 

in general a point na  (different from 1 1,..., na a − ) in A not covered by 1{ ,..., }nU U  for all n +∈ℤ  (since 

1{ ,..., }nU U  cannot cover A).  Then 1 2{ } { , ,...}na a a=  is an infinite subset of A and thus, since A is 

countably compact, must have a limit point a in A.  Since U covers A, then ka U∈  for some k +∈ℤ .  Now 

by construction of { }na , for all i k> , ia  is not covered by 1{ ,..., }iU U  and thus i ka U∉  for all i k> .  

Thus kU  can only intersect { }na  at the points 1,..., ka a .  But X is a 1T -space, so by problem 13, kU  must 

intersect { }na  at infinitely many points since a is a limit point of { }na  and kU  is an open subset of X 

containing a.  This contradiction means that there must be a finite subcollection of U that covers A.  
 
Second proof of this direction: 

Let A be a countably compact subset of a 1T -space X.  If A is finite, then clearly every countable 
open cover of A has a finite subcover by taking one member of the open cover to cover each point of A.  So 
assume A is infinite.  Let 1 2{ , ,...}U U=U  be a countable cover of A.  Given any finite subcollection V of 

U, let S be the set of all points in A that is not covered by V.  If S = ∅ , then V is a finite subcover of A and 
we are done.  If S is finite, then each point in S is contained in some member of U and so there is a finite 
subcollection W of U covering S and so V W∪  is a finite subcover of A.  Thus assume S is infinite. 

 Since A is countably compact and S is infinite, then S has a limit point 1a  in A, which must belong 

to some 
1i

U ∈U .  Since 
1i

U  is an open subset of X containing 1a  and 1a  is a limit point of S, then 
1i

U  

must intersect S.  If 
1i

S U−  is finite, then again we conclude that U admits a subcover of A.  If 
1i

S U−  is 

infinite, then again by countably compactness of A, 
1i

S U−  has a limit point 2a  in A.  Now 2a  cannot be in 

1i
U  since then 

1i
U  would be an open subset of X containing 2a  which does not intersect 

1i
S U− , 

contradicting the fact that 2a  is a limit point of 
1i

S U− .  Thus 2a  must belong to 
2i

U  for some 
2i

U ∈U  

distinct from 
1i

U .  If 
1 2i iS U U− ∪  is finite, then once again we conclude that U admits a subcover of A.  If 

instead 
1 2i iS U U− ∪  is infinite, then again by countably compactness of A, 

1 2i iS U U− ∪  has a limit point 

3a  in A.  Now 3a  cannot be in 
1i

U  or 
2i

U  since then 
1 2i iU U∪  would be an open subset of X containing 2a  

which does not intersect 
1 2i iS U U− ∪ , contradicting the fact that 3a  is a limit point of 

1 2i iS U U− ∪ .  Thus 

3a  must belong to 
3i

U  for some 
3i

U ∈U  distinct of 
1i

U  and 
2i

U .  We continue this process to obtain the 

(possibly terminating) sequence of points 1 2 3 4{ } { , , , ,...}na a a a a= . 

 Suppose { }na  is infinite, which means that 
nn ia U∈  for all n +∈ℤ .  Now since ia A∈  for all 

i +∈ℤ , then { }na  is an infinite subset of A, and so by countably compactness of A, { }na  must have a limit 

point a in A.  Now a must be in 
ki

U  for some 
ki

U ∈U .  Since every na  cannot belong to 1 1,..., nU U −  by the 

previous paragraph, then 
ki

U  cannot contain na  for all kn i> .  Thus 
ki

U  can only intersect { }na  at the 

points 1,..., ki
a a .  But X is a 1T -space, so by problem 13, 

ki
U  must intersect { }na  at infinitely many points 

since a is a limit point of { }na  and 
ki

U  is an open subset of X containing a.  This contradiction means that 

{ }na  cannot be infinite.  Thus { }na  must terminate at some last term Na .  This means that there is no 1Na +  

to be a limit point of 
1 j

N

i
j

S U
=

− ∪ , which means that 
1 j

N

i
j

S U
=

− ∪  must be finite (because if 
1 j

N

i
j

S U
=

− ∪  were 

infinite, then it would have a limit point 1Na +  by countably compactness of A).  Thus there is a finite 

subcollection Y of U that covers 
Ni

S U− , and so 
1

{ ,..., }
Ni iU U Y∪  is a finite subcollection of U that covers 

A. 

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com



⇐  Suppose X is a 1T -space and that every open cover of a subset A has a finite subcover.  Let B be an 

infinite subset of A.  Suppose B has no limit point in A.  Then for any b B∈ , we can find an open subset 

bU  of X that intersects B only at { }b .  Using the Axiom of Choice, let 1 2{ , ,...}C b b=  be any countable 
subset of B.  Now B contains all its limit points (since it has none) and thus is a closed subset of X.  Since X 
is a 1T -space, then { }nb  is a closed subset of X for all n +∈ℤ .  Thus 

1 2{ , ,...} { }n
n

C b b B b
+∈

= =
ℤ

∩  

is the intersection of closed subsets of X and hence is a closed subset of X.  Thus 

1 2
{ , ,...} { }b bU U A C= −U ∪  

is a collection of open sets.  Furthermore U is a countable collection, and, since 
nn bb U∈  for all n +∈ℤ , U 

is a countable open cover of A.  However any finite subcollection of U will have to have some 
nbU  deleted, 

and deleting any 
nbU  from U will leave the point nb A∈  uncovered.  Thus U is a countable open cover of 

A that has no finite subcover, contrary to hypothesis.  Thus B must have a limit point in A.  Therefore every 
infinite subset of A has a limit point in A, and so A is countably compact.  ■ 
 
 
  
27. (Adamson, p.44)  Let X be a topological space and define a relation R on X by setting ( , )x y R∈  if 

and only if { }x y∈ .   
a) Prove that R is reflexive and transitive. 
 

First we prove that R is reflexive and transitive.  By definition of closure, { }x x∈  for all x X∈  so 

so ( , )x x R∈ , so that R is reflexive.  Now suppose ( , )x y R∈  and ( , )y z R∈ .  Then { }x y∈  and { }y z∈ .  

Now { }x y∈  means that any open set U containing x intersects { }y , i.e. contains y.  But { }y z∈  means 

that, since U contains y, U intersects { }z .  Thus every open set containing x also intersects { }z , which 

means that { }x z∈ .  Thus ( , )x z R∈ , and so R is transitive.  Another way to show that { }x z∈ , is to note 

that since { } { }y z⊂ , then { } { } { }y z z⊂ = , and so { } { }x y z∈ ⊂ .  ■ 
 
b) Prove that R is a partial order relation if and only if X is a 0T -space. 
 
⇒  Suppose R is a partial order relation.  Let x and y be two distinct points in X.  Then by anti-

symmetry of R, we cannot have ( , )x y R∈  and ( , )y x R∈ , i.e. we cannot have both { }x y∈  and { }y x∈ .  

Thus we must have either { }x y∉  or { }y x∉ .  Then by problem 4, X is a 0T -space. 

⇐  Suppose X is a 0T -space.  By part (a), R is reflexive and transitive, so we need only show that R is 

antisymmetric to prove that R is a partial order relation.  Suppose ( , )x y R∈  and ( , )y x R∈ .  Then { }x y∈  

and { }y x∈ .  If x y≠ , then there exists an open set U that either contains x but not y, or contains y but not 

x.  But { }x y∈  means that every open set containing x intersects { }y , i.e. contains y and { }y x∈  means 

that every open set containing y intersects { }x , i.e. contains x.  This contradiction means that we must have 

x y=  and so R is antisymmetric and thus is a partial order relation.   

Adamson:   { }x y∈  means that { } { }x y⊂ , so that { } { } { }x y y⊂ = .  Similarly, { }y x∈  means that 

{ } { }y x⊂ , so that { } { } { }y x x⊂ = .  Thus { } { }x y= .  Since X is a 0T -space, then by problem 5, distinct 

one-point subsets of X have distinct closures.  Thus if x y≠ , then { } { }x y≠  so that { } { }x y≠ .  Hence we 

must have x y= , and so R is antisymmetric and thus is a partial order relation.  ■ 
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c) A topological space X is called an Alexandrov space if the intersection of every collection of open 
subsets of X is open.  Prove that a subset C of an Alexandrov space is closed if and only if whenever y C∈  

and ( , )x y R∈ , then x C∈ . 
 

⇒  Suppose C is a closed subset of an Alexandrov space X.  Let y C∈  and ( , )x y R∈ , i.e. { }x y∈ .  

Since y C∈  and C is closed, then { }y C⊂  by definition of closure.  Thus { }x y C∈ ⊂ . 

⇐  Let C be a subset of an Alexandrov space X, and suppose that y C∈  and ( , )x y R∈ , i.e. { }x y∈ , 

implies x C∈ .  We need to show that C is closed.  Now for any collection { | }iC i I∈  of closed subsets of 
X, we have by deMorgan’s Law,   

( ) ( )i i
i I i I

C X X C
∈ ∈

= − −∪ ∩ , 

which is the complement of an intersection of open sets (and an intersection of open sets is open since X is 

an Alexandrov space) and hence is closed.  Consequently, { }
y C

y
∈
∪  is a union of closed subsets of X and 

hence is a closed set containing C.  Thus { }
y C

C y
∈

⊂ ∪ .  Then for any x C∈ , we have { }x y∈  for some 

y C∈ .  Thus by hypothesis, we have x C∈ .  Hence C C⊂ .  Since C C⊂ , then we have C C= .  
Therefore C is closed.  ■ 
 
 
 
28.    
 
 
 
29.   
30.    
31.   
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