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Kurt Gödel is said to be the “greatest mathematical logician of all time” 

(Hawking 1089) and is best know for his Incompleteness Theorems.  Gödel’s 

theorems have implications on the foundations of mathematics.  We will examine 

the time period of the Gödel’s theorems in view of formalism, understand what 

two of his theorems are saying, and analyze where exactly his incompleteness

theorems are applicable and also where they are not applicable.

It is important to note that Gödel’s Incompleteness theorems were published 

in 1931 at a time when many mathematicians were trying to rigorize mathematics.  

One notable person of the era was David Hilbert.  At an international congress in 

Paris, Hilbert gave a talk entitled Mathematical Problems which contained 23 

problems, which he used to motivate a formalist foundation of mathematics, also

known as Hilbert’s Programme.

“These rules form a closed system that can be discovered and 

definitively stated.  The fundamental idea of my [Programme] is none 

other than to describe the activity of our understanding, to make a 

protocol of the rules according to which our thinking actually 

proceeds…  If any totality of observations and phenomena deserves to 
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be made the object of a serious and thorough investigation, it is this 

one…” (Shapiro, 299).  

With respect to formalism, one problem of great importance was Hilbert’s 2nd, 

which asked mathematicians and logicians:

“1. To prove that all true mathematical statements could be proven, 

that is the completeness of mathematics

  2. To prove that only true mathematical statements could be proven, 

that is, the consistency of mathematics” (Hawking 1121).

This accomplishment would lead to a complete and consistent system: all 

paradoxes would be avoided and more importantly no paradoxes could possibly 

arise.

To understand what Hilbert meant by a “complete and consistent system” we 

must understand exactly what consistency and completeness is.  Consistency can 

be defined to be “when every theorem, upon interpretation, comes out true” 

(Hofstadter, 101).  More specifically, if a system is complete, then every statement 

which can be derived from this system is either true of false and can be shown to 

be either true or false using the axioms of the system.  Next we must define what it 

means for a system to be complete.  Completeness with respect to axiomatic 

systems is best defined as “when all statements which are true… and which can be 
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expressed as well-formed [and meaningful] strings of the system, are theorems” 

(Hofstadter, 101).  It follows that, a system is inconsistent if a false proposition can 

be derived from the axioms of that system.  Hilbert’s Programme was proposed in 

1900 and for the next 30 years many were contributing to the proof of this result.

Bertrand Russell and Alfred North Whitehead gave a noble and elaborate 

attempt in Principia Mathematica (PM) to show that the 2nd problem of Hilbert’s 

Programme was indeed true.  In PM the aim was to derive the fundamentals of 

arithmetic (of natural numbers) from logical principles.  This was done with an 

extreme amount of rigor but ultimately did not explicitly show that no 

contradictions could arise, thus leaving Hilbert’s 2nd question unanswered.

Also notable in that era were Zermelo and Frankel who developed a set 

theory called Zermelo-Frankel set theory (ZF).  This set theory was based on only

8 axioms and rid set theory of certain paradoxes such as “the set of all sets”.  By

the 19th century most of mathematics was rigorized enough to avoid paradoxes

which were rampant earlier in the century and it was thought by some that this 

could be continued until all of math was complexly free of paradoxes and thus be 

reduced to a relatively small number of axioms.  Thus Hilbert Programme seemed 

to be in motion and possibly close to fruition.

Gödel himself admitted in his famous paper On the Formally Undecidable 

Propositions of Principia Mathematica and Related Systems that: “one might 



5

conjecture that these axioms [PM and ZF] and rules of inference are sufficient to 

decide any mathematical question that can at all be formally expressed in this 

system” (van Heijenoort, 597).  However we now arrive at the death blow to 

Hilbert’s Programme.  In 1931 Gödel published his famous incompleteness 

Theorem stating “For any consistent formal, computably enumerable theory that 

proves basic arithmetical truths [of natural numbers], an arithmetical statement that 

is true, but not provable in the theory, can be constructed. That is, any effectively 

generated theory capable of expressing elementary arithmetic cannot be both 

consistent and complete”.  In other words, for any non-trivial mathematical system 

which can describe the arithmetic of natural numbers, the system cannot be both 

consistent and complete.

We can take one application of this in relation to Peano Arithmetic (PA).  

PA is based on 5 axioms and from these we can derive addition, subtraction, 

multiplication, distribution, commutativity, associativity, etc.  Gödel showed that 

we could construct a statement in PA stating ‘this statement is unprovable’.  Let’s 

call this statement ‘P’.  Then if P is true, thus unprovable, then the PA is 

incomplete: that is, there is a meaningful statement which can be made within PA 

which cannot be shown to be true or false.  On the other hand, if P is false, then we 

arrive at a version of the liar’s paradox; thus, PA would be inconsistent.  Therefore, 



6

Gödel’s incompleteness theorem implies that PA must be either incomplete or 

inconsistent.

By now we may have been tempted to ask why we wouldn’t simply add an 

axiom to PA that says “P is true”; let’s call this statement P*.  This leads us to 

Gödel’s 2nd Incompleteness theorem: “If formal arithmetic is consistent then that 

consistency cannot be proven from within formal arithmetic” (Hawking 1091).  

Thus, if we can ‘prove’ that a system is consistent from formal arithmetic, we have 

shown it to be inconsistent by Gödel’s 2nd Incompleteness theorem.  Hence, in our 

example of adding P* to PA we have then contradicted Gödel’s 2nd Incompleteness 

theorem and shown our modified PA to also be incomplete.*

One other note we must make about Gödel’s Incompleteness theorem is that:

“this situation is not in any way due to the special nature of the 

systems that have been set up but hold for a wide class of formal 

systems; among these, in particular, are all system that result from the 

two mentioned through the addition of a finite number of axioms” 

(van Heijenoort, 597). 

That is to say that Gödel’s theorem did not find one isolated flaw in ZF and 

PM but simply used these as an example.  Also, his results could be 
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extended to other systems.  In fact, Gödel’s theorem applies to any formal 

system that can be expressed in a finite set of axioms as strong as PA and

expressing integer arithmetic (Rucker, 268).

Thus we see Hilbert’s Programme effectively destroyed*[ref].  No system 

which can make meaningful arithmetic statements of natural numbers could be 

both complete and consistent.  It’s worth noting that there are some small systems 

that can describe arithmetic of natural numbers however this can only be done in a 

much more limited way.

We can now see the consequence of his theorem: math cannot and will not 

ever be rigorized to a finite set of axioms!  We will never rid math completely of 

all possible paradoxes.  One implication of Gödel’s theorem is taken directly by 

him and relates to the Continuum Hypothesis.  The Continuum Hypothesis states 

that there is no cardinality (amount of elements) between the cardinality of the 

natural numbers (0א) and the cardinality of the real numbers (c).  For example,

Gödel showed that the Continuum hypothesis could be added to the ZFC

(Zermelo-Frankel with the Axiom of Choice) and this would not lead to any 

contradiction (Hawking 1093).  It was also shown later that removing the 

Continuum hypothesis from ZFC would not yield any contractions.  This shows 

ZFC to be incomplete.  That is, there is a statement that can be made within the 
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system that cannot be proven to be true or false.  We call these undecidable 

statements.

Another statement shown to be undecidable by Gödel is the Axiom of 

Choice; which states that we may choose an element from a set.  Gödel proved in 

1940 that the Axiom of Choice is “consistent with other axioms of set theory” 

(Boyer, 611).  This is especially important in the area of analysis where the Axiom 

of Choice is indispensable.

We have seen some remarkable, while straightforward results of Gödel’s 

Incompleteness theorem; however, this theorem is often a misunderstood and 

misapplied theorem.  There are many misconceptions of what his theory applies to, 

but now that we know the definite meaning of his theorem we can analyze these 

misconceptions.  One common conjecture that is made upon being introduced to 

Gödel’s theorems is that we cannot prove anything in mathematics or that we 

cannot be certain that our results are correct.  To take this further is to say if 

mathematics cannot be shown to be consistent, then it must all be completely

inconsistent, full of paradoxes and flawed to the core.  This is not at all what Gödel 

proved.  Indeed, Gödel showed that logically we cannot create a system in 

mathematics, expressing integer arithmetic, which is both complete and consistent; 

that is, if a system is complete it is inconsistent and if it is consistent then it is 

incomplete.  We can simply accept that in using ZFC or PA or any other consistent
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set of axioms, we will have an incomplete system.  This is not to say that the 

axioms will infer falsities, only that there will always be truths which cannot be 

shown to be true.

A second misconception is that Gödel proved that the bible is inconsistent 

and thus leads to contradictions.  This is a very silly statement because the bible is 

trivially incomplete with respect to formal systems.  That is to say propositions 

could be made that the bible does not claim.  For example the proposition “Joseph 

sneezed on his 19th birthday”.  The proposition is either true or false, of course, but 

the bible makes no claim about it and the claim cannot be derived from the bible.  

It is clearly not a system and Gödel says nothing in his incompleteness theorem 

about the bible.  Similar misapplications of Gödel’s theorem have also been 

applied to the Canadian constitution, Capitalism and many other trivially 

incomplete systems.

Another very common blunder that is made upon encountering Gödel’s 

incompleteness theorem is the confusion between truth and provability.  K. C. Cole 

in his book The Universe and the Teacup: the Mathematic of Beauty and Truth say 

“[t]his confidence that truths would be discovered in all fields was shattered by the 

recognition that there’s no truth in mathematics” (Cole, 162).  Cole erroneously 

equates truth and provability!  Gödel did not show that mathematics has no truth in

it, but, only that there may exist truths in a specific system can be shown to be true.  
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Indeed, two apples taken with another two apples are still four and can be trivially

abstracted into mathematic as 2+2=4.  That is both a true and mathematical 

statement.  Indeed, we now notice one of the intricacies of Gödel’s theorem is that 

“by focusing on provability rather than on truth, Gödel’s sentence avoids the 

[liars’] paradox” (Hawking 1092).  We can see that applications such as these are 

vague extrapolations of Gödel’s theorems which are likely used for the author’s

intent instead of objective applications.

Other misinterpretation of Gödel’s theorem is that Gödel has shown that no 

axiomatic system can be complete and consistent.  On the contrary, Alfred Tarski 

showed that (first-order) arithmetic of real numbers (called the theory of real 

closed fields), for example, is consistent and complete. This does not contradict 

Gödel’s Incompleteness Theorems because real number arithmetic doesn't allow 

you to formalize the notion of "integer", and thus it cannot fully express integer 

arithmetic. Tarski also gives an axiomization of Euclidean geometry which is 

equivalent to the theory of real closed fields, and so, is also consistent and 

complete.  Thus, there are non-trivial, complete and consistent systems; however, 

these systems fall outside of the implications of Gödel’s Incompleteness theorems.

Thus we have seen that Gödel has shown PA and ZFC to be incomplete.  As 

well we have seen how the Continuum Hypothesis and the axiom of choice are 

independent of ZFC.  Also, Gödel’s incompleteness should not be extrapolated to 
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situations which do not involve axiomatic systems or systems which do not express 

integer arithmetic, among other requirements.  We have seen that although Gödel 

had a wide spread effect on mathematics, meta-mathematics, and mathematical 

logicism, his implications should not be taken too far.  Lastly, a consequence of 

Gödel’s theorem is that we as mathematicians will always have more to research.  

There will always be more to know about mathematics.  We will always have 

surprising results that come out of mathematics.  We will always be faced with 

challenges in mathematics where no one has gone before.  There will always be ‘ah 

ha’ moments when we make a connection that no one has made before.  In short, 

an implication of Gödel’s theorem means we will never reach the end of 

mathematics.
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