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We investigate here various kinds of semi-product subgg@ffPoincaré group in the scheme of Cohen-Glashow’s vezgiap
relativity along the deformation approach by Gibbons- Goafope. For each proper Poincaré subgroup which is a semixgt of
proper lorentz group with the spacetime translation grb(#, we investigate all possible deformations and obtdithalpossible
natural representations inherited from the 8 representation of Poincaré group. We find from the obtairedral representation
that rotation operation may have additional accompaniatégtansformation when the original Lorentz subgroup feheed and
the boost operation gets the additional accompanied sealsformation in all the deformation cases. The additiacabmpanied
scale transformation has a strong constrain on the podsildeant metric function of the corresponding geometry #me field
theories in the spacetime with the corresponding geometry.
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1 Introduction Lorentz violation from theoretical aspect [2—-6]. Because a
low energy scales, paritly, charge conjugatiof and time
The local Lorentz symmetry and CPT invariance is one ofreversalT are individually good symmetries of nature while
the fundamentals of modern physics. The theoretical investhere is evidence @P violation for higher energies, one may
tigation and experimental examination of Lorentz symmetryconsider the possible failure of Poincaré symmetry at such
have witnessed considerable progress and attracted &bt of high energy scales. One theoretical possibility is that the
tentions since the mid of 1990s. It is inevitable to encounte spacetime symmetry of all the observed physical phenom-
quantum gravity in the exploration of the theoretical frame ena might be some proper subgroups of the Lorentz group
work of high energy physics, especially around the energyalong with the spacetime translations only if these kinds of
scale near Planck scale. fl@rent quantum gravity models proper subgroups of Poincaré group incorporating with ei-
neither exclude Lorentz violation nor predict it concl@iv  ther of the discrete operatiofs T, CP or CT, can be en-
Some high energy models of spacetime structure, such agrged to the full Poincaré group. The Very Special Rela-
non-commutative field theory, do, however, explicitly con- tivity (VSR) proposal by Cohen and Glashow is based on
tain Lorentz violation. So the possible Lorentz violatish  these smaller subgroups [7]. Cohen and Glashow argued that
important theoretical question [1]. the local symmetry of physics might not need to be as large
There are many attempts to investigate the possibleas Lorentz group except its proper subgroup, while the full
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try P, T, CP or CT enters. The Lorentz violation is thus bons, Gomis and Pope’s deformed very special relativity ap-
connected with CP violation. Since CP violatinfjeets in  proach is employed in the investigations of anisotropy in
nature are small, it is possible that Lorentz-violatiritpets ~ FRW like cosmology, which leads to the Lorentz violating
may be similarly small. They identified these VSR subgroupscosmology acceleration, and Lorentz violation as the &igg
up to isomorphism as T(2) (2-dimensional translationshwit of density inhomogeneities to the cosmological fluid [13,14
generatord, = Ky + Jy andT, = Ky — Jy, whereJ andK Itis investigated that Randers spacetime with local symynet
are the generators of rotations and boosts respectivedy, E( group TE(2) can possess local symmetry of the generic VSR
(3-parameter Euclidean motion) with generatdgsT, and  proposed by Cohen and Glashow and the implication of wich
Jz, HOM(2) (3-parameter orientation preserving transforma-to type la supernovae [15] .

tions) with generator$,, T, andK; and SIM(2) (4-parameter In this paper we follow Gibbons-Gomis-Pope’s approach
similitude group) with generatorg;, T,, J, andK,. The on the deformation of ISIM(2) and investigate the deforma-
semi-direct product of the SIM(2) group with the spacetimetion of all such kinds of subgroups of Poincaré group which
translation group gives an 8-dimensional subgroup of theare the semi-product of three generators and four gensrator
Poincaré group called ISIM(2). The spurion strategy can al Lorentz subgroups with the spacetime translation group T(4
be applied to VSP. The invariant tensor for group E(2) can(semi-product Poincaré subgroup) and the five dimensional
be a 4-vecton = (1,0, 0, 1) while the symmetry groups T(2) representations, which are inherited from the five dimen-
admits many invariant tensors. There is neither invarieamtt  sional representation of Poincaré group, (the naturalerep
sors for HOM(2) and SIM(2) nor the local Lorentz symmetry sentation) of all the semi-product Poincaré subgroup ds we
breaking perturbative discription for either of these greu as their deformed partners. We find that the deformation
of semi-product Poincaré subgroup may have more than one

Inspired by the fact that Poincaré group admits the unique ilies th hvsicall ble. Th b
deformation into de Sitter group, Gibbons, Gomis and Pop amilies that are physically acceptable. There may be more

find that the subgroup ISIM(2) considered by Cohen andthan one ingquivalent nqtgral r.epres'entations for onelyami
Glashow admits a 2-parameter family of continuous defor-Of deformation of a specific Poincaré subgroup. Usually the

mations which may be viewed as a quantum correctionsdeformation of the original Lorentz subgroup part causes th
or the quantum gravity féect to the very special relativ- rotational operation an additional accompanied scalefact
ity, but none of these give rise to noncommutative trans-Which is not reasonable, for we believe that the departure

lations analogous to those of the de Sitter deformation Oi!rom_ Lorentz symmetry should be from boost rather than
the Poincaré group: space-time remains flat. Among the 2_rptanonal_ operation. Anyhow’, most deformed ,bOOSt opera-
parameter family of deformation of ISIM(2), they find that tions dc_) md(_eed have an add_|t|onal accompanied scale_ fac-
only a 1-parameter DISIM2), the deformation of SIM(2), _tors WhICh will play a key role in the seargh for group aptmn
is physically acceptable [8]. The line element invariant un mvangnt geomgtry a_nd construction of field theories in the
der DISIM,(2) is Lorentz violating and of Finsler typesd= spactime of the invariant geometry.

(nﬂudxﬂdx“)l_b(n#dx”)%. The DISIM,(2) invariant action for
point particle and the wave equations for spin}(and 1are
derived in their paper. The equation for spin O field is in gen-The deformed Lie algebra or Lie group is extensively investi
eral a nonlocal equation, since it involves fractional ewven gated [16,17]. Let’s give here a short review on the deforma-
rational derivatives. tion of Lie algebra according to Gibbons-Gomis-Pope. For a
Lie algebra with commutation relations,

2 Deformation of Lie algebra

The cosmological principle is the foundation of the stan-
dard cosmological model, teCDM model, which assumes [Ti,Tj] = Ciijk» (1)
that the universe is isotropic and homogeneous at largescal
However, there are evidences which challenge the standa
ACDM model in the cosmological and astronomical obser-
vations. These observations can be summarised as CMB é.k, = cikj +tAI!<J_ +t2|3:<j T 2)
multipole alignments, QSO polarization alignment andéarg
scale bulk flows along a preferred cosmological axis [9]. The
Planck satellite has found deviations from isotropy (atbun
30) by the CMB anisotropy observations recently [10]. The [T T T + [T T T + [T T1. T =0 3)
Finslerian geometry is naturally employed to account f@ th
kind of anisotropic spacetime structure. The extensions o
Einstein gravity theory to Finslerian type of geometry of Cncl; = GG, + GG, + €C; = 0. (4)
spacetime have been proposed in recent years [11,12]. T
FRW like spacetime and the refinement to the Schwarzschil
solution in these Finslerian gravity frameworks are inwest
gated. The DISIN(2) invariant Finslerian metric by Gib- t(ARCH; + ClA)

ye suppose that the structure constants of deformed Lie alge
bra is of the form

Heret represents the deformation parameter. The constrain
on deformed structure constants from Jacobi identity

pas the form

he expansion of deformed structure constant with the power
of t yields
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+ 2 (A{‘[“kAgj] +BRClj + C{FKB!”) +--=0. (5) - span{rx, rys rz} (the so(3)):[rx, ry] =1y, [ry, rz] =

. . . . o Mz ] =Ty
If there exists a family of deformed Lie algebra paramettize

by a continuous variable there should be a group of con- - span{bx, by, rz} (the Lorentz algebra in2L di-
strained equations which arise from every powet of the mension){by, by| = =1z, [by. 1| = by, [rz by =
above equation, as: .

— spanity, t, r;} (the 2 dimensional Eudlidean alge-

m I mal  _
Ai[kclij] * CI[kA:” =0, | (6) bra 8(2)) tl’ tz] =0, [rz, tl] =1y, [rz, tz] = —1;.
m m m _
ArA + BipCijy + CipBij = 0, @) _ spanity,t, by} (2-dimensional orientation pre-
and etc. serving transformations group HOM(2))ty [t2]
To avoid trivial deformation which arises merely from a =0, [byt1] = —ts, [byto] = —to.
change of basis in the original Lie algebra, one demands , one Lie subalgebras with four generators: gpan
that there should not be a transformation of basis of Lie al- to, 12, b} (the 2 dimensional similitude group SIM(2))
gebraS = & + tg} + -~ € GL(n.R), such thatCj = with commutation relationst{,t;] = [rzb,] = 0,
skce, (S‘l)ia (S‘l):) and hence [Fzt1] = to, [rnt2] = -t and[b, t1] = —ty, [bs o] =
—t.
k kel k I K 4
Aj = oGy - Cjdi - gy (8) The Lie subalgebra span, by} is isomorphic tot(2) =

Define A* as the basis vector of the original Lie algebra s_par{tll,tz}, lan_d they are both isomorphic to the 2 dimen-
(the left invariant 1-form), thed = _%C:"‘b/la A ILT) SIO\?VZ \t\c?IIncSa’cllltltﬁg EL%UF;JJZ)& Lorentz or Poincaré group as
We can define the vector valued one form figitl = ¢g/lb Lorentz or Poincaré gb rg for brevit group
and 2-form fieldA* = A4 A Al andB? = 3B34' A A} as z ! stubgroup VIY:

well as a matrix valued 1-form fiel@? = 1°C2,. So we have
the covariant exterior flierential operator of the present Lie
algebraD = d + CA, the formula (6) can be rewritten as:

4 The deformation group of the semi-product
subgroups of Poincagé group

DA? = 0, A% + —D®?. 9) Ppincaré group_is the semi-direct producj[ of Lorentz group
with the translation group. Lorantz group is the normal sub-
The Jacobi Identity requird3? = 0, then group of the Poincaré group which is generated by six gen-
erators, three rotation generatags ry, r, and three boost
DB* + (Ae A =0, (10) generatordy, by, b,. The semi-direct product of subgroup

of Lorentz group with translation group is also the subgroup
of Poincaré group, which makes up one type of Poincaré sub-
groups. We will concentrate our attention on this type ofsub
groups and it is this type of Poincaré subgroup that Cohen
and Glashow employ in their very special relativity progosa
The deformation groups of this type of subgroups can also
be divided into two kinds. One kind consists of the semi-
direct product of the deformation of Lorentz subgroup SL
with T(4), which is regarded as the locally deformed group,

The Lorentz Lie algebra has the following Lie sub-algebras"hile the deformation group of the other kind does not pos-

where(Ae A)? = %AS[CAZE]AC A 29 A 2%, The equation is
solvale if D(A e A)? = 0.

If we setA e A = 0, we find that the second order term
of deformation will also satisfy eq. (9). Then the accepgabl
form of B* is the same as one &¥. It is enough to consider

the first order deformed term only.

3 The proper subgroups of Lorentz group

up to isomorphism. sess the semi-direct product structure, which is regarded a
the globally deformed group. Among the globally deformed
¢ Lie subalgebra with a single generator. groups, the Lorentz subgroup does not deform in the first

class but it will deform in the second class. We will concen-
trate on the first class of globally deformed groups, in which
the deformation part comes from the intercrossing between
Lorentz subgroup and the translational group and the @ansl
— span(ry, by}: [ry, by] = 0. tional group itself. The deformed group thus obtained does
. not have the semi-direct product structure of the Lorentz su
= span{rc+ by, b [+ fy by = byt . group with the deformecltiJ translation group. Similar to the
e Four Lie subalgebras with three generators: decomposition of Poincaré group into the Lorentz groue, th
span{rx, ry, rz}, spar{bx, by, rz}, spanty, to,r,} and  local symmetry group, and the translational group which-con
spanity, tp, b;}, wheret; = by + ry andt, = by —ry. nect the local properties within a neighborhood, the deéatm
The corresponding commutation relations are Poincaré subgroups can also be decomposed into two parts,

e Two Lie subalgebras with two generators: sfranby}
and spar{lrx +by, bz}. The corresponding commutation
relations are
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one describe the local properties of the spacetime and thanknown variables for Poincaré group, 200 for ISIM group
other part reflects the global properties of the spacetime t@and 175 for IHOM group respectively.
some extent. We mainly concentrate our attention on that We can solve eq. (16) perturbatively. The dominant part
kind of deformed Poincaré subgroups in which the Lorentzof perturbation parameterfor generators antifor structure
subgroup part is not deformed so that the local property ofconstants should be in the same order. In general, we can
spacetime is the same as described in VSR. assume tham}‘j = TAI!(J-. Eq. (16) becomes

From eq. (10), we obtained a constrain condition

2 G-G] - Ao =0 (17)
D(Ae A% =0. (11) [Gi» Tj] [Th ] Ck Gy — Alk]Tk =0
The simple solution : K ik _ .
AeA=0 (12) The simplest case IsA]; = A andt = t;7. Rewritet; as

t, and finally we have
is a solution that satisfies all the constrain condition &t al

nonlinear orders. Then the constrain conditions from Jacob [Gi’Gi] - tAl!(ij =0 (18)
Identity (10) can be written as: [Gi,T]] + [Ti,Gj] - Ciijk _ tA,!(ka -0

DB? =0, (13) There may be more than one set of solutions due to the
. . quadratic equations. We find that there may be more than one
i.e., the second order deformation of structure cons@sts-  jnequivalent natural representations for the deformatioa

isfies the same equationASThel’efOI’e we can get the h|gher Specific Lie a|gebra' which Corresponds tdfelient Space_
order of deformation of structure constants in this way. Duetime geometry.

to the simplest solution of the constrain condition (10)dke
formation of the same group can have sevendédent forms,
e.g., the deformation group of IHOM, the semidirect product
of HOM and T(4), has two dierent families. Of course the The commutation relations for Poincaré group are
Poincaré group itself and ISIM group have only one family

4.2 The deformation of Poincagé group

. 3 3
of deformation. [ri.ri] = Z £ijkl: [0, bj] = = 3 &ijrie
k=1 k=1
4.1 The perturbative solution of the representation of the [b., ] Z &ijkbi, (19)
deformed generators [p., p,] O [ri,p] =0, [ri’ pj]
The natural representation of the deformed generators can - Z &ijkPx. [bi. pe] = pi. [bi, pj] = 8ijpr.

be viewed as some kind of perturbation of the represen-
tation of original group which inherits from the Poincaré
group 5 dimensional natural matrix representation, fodise
formed group can be viewed as the perturbation of the origi- A{ch'ij] + C,’Fk A'ij] =0,

nal group. The generators of deformed group can be written

as{T’; = T; + 7G;} and the corresponding structure constantsthe simplest solutioAe A = 0 as the second order constrain,
asC'f; = C +tAk, where(T;} andCf are the generators and and the non-triviality condition,

structure constants of the original group, hence AI!(]' 4 ¢:(Ci|j ~ C|k,-¢: ~ Cik|¢',-,

The first order Jacobi constrain equation,

ChTe =TT 14 : :
=[] 9 reduce most of the possible 30142 = 450 deformation
and parametersz!\'jk to zero and it can be verified that the defor-
CKT!, = [T’i T'<] (15) mation group of Poincaré group is unique and possesses the
1) ’ ’

commutation structure,

1l
o ?\_Mwu Mw” Mw

2 [Gi,Gj] + T([Gi,TJ’] + [Ti,Gj] B Ciijk B tAI!(]-Gk) |]krk, [b|, b; ] == Z Eijklk,

[rior
~tAKT = 0, (16) [b.,r &b [ P =
(20)
where the generatoiiss andGs are all 5< 5 matrices and the [
matrix elements of the unknow@®s are functions of the de-
formation parameter Moreover all ofGs are zero matrices [Pt pi]
whent = 0. We have nowN x 5x 5 = 25N unknown vari-

ables for a Lie algebra witN generators, e.g., there are 250 which is known as Lie algebra of de Sitter group.

rl7

 EiikPeo [bi p] = pi. [bi. py] = &

bi, [ph p]] = tZ Eijklks
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The natural representation of the generators is also upiquet.3 The deformation of ISIM

which has the form, The algebraic structure of ISIM, the semi-product of SIM

with T(4), is

1
P = Py = ! [tr.r2] = —to, [t1,br] =11, [ta, pt] = [t2, Pz] = Px.
P ’ [t2, 1] = t1, [t2,b,] =12, [t2, pt] = [t2, P2] = Py,
~t t [t D = P-Po [t D] = pe=po [r2pd =y, (22
(21) [rzpy| = =Pe [bz il = e [bz 2] = .
py = 1, p:= , The Jacobi constrain reduces the & = 224 deformation
¢ ¢ 1 parameters of the deformed group DISIM to 57. The simplest
solutionA e A = 0 then is reduced further to 6 ones,
where we only denote the non-zero matrix elements of the de- Aib» L A% A, Abt’ AL, (23)

formed generators, i.e., the representation matrix of thero
six generators, the generators of the Lorentz group, remaimvherer, b, t, x, zrepresent,, b,, pi, px, P, respectively.
unchanged. | The commutation relation for DISIM is

[t re] = ~to, [t ] = (1+ AL )ty [t 1z =to, [ti, pi = P [t ol = (1+ AL ) - (1- AZ) pa.

[t pa] = (1+ AL + AL) P [t be] = (1+ AL ) ta, [t i = by [t py] = (1+AL) pe— (1- AL pes

[t2, p] = (1 + At + AL ) Py, [rz ol = APt [z Px] = Py + AP [rz’ py] = —px+ APy, (24)
[r2 Pzl = Az, [bz’ Px] = ( + AL AL+ AL - A )px’ [va py] ( + AL A A - AL )

[bs, pt] = P+ A Pt + AL Pz [ bz, P = pr+ (2A}, - Abt) P+ (2AL + 2AZ + AL+ 2A% — 2AL ) ps.

The non-triviality condition is In the first subfamilyAl, can be absorbed into the redefi-
) ) nition of the generators,
+(AL + A2 + AL+ AZ - ALY 0. (25) _
( 1x 1X Abt Abt lb) N (1+A&X) 1/2ti’ i=12 (29)
The simplest solutior e A = 0 gives Da — (1 + Atlx)wpm a=tz
Al (Atlx + Aix) =0, There are three deformation parameters Wt, AL, AZ,
Aét( A +AL) =0, (26)  which can be simplified further. In fact, amd, gives the
( 2A1 )( + A ) 0. same Lie algebra up to an isomorphism whip + A;, is
kept fixed. For example, there are two Lie algebtifs,t,
The existence of deformation parametgs reveals that there 0 g0 p® p® , ¥, p¥ wherei = 1 corresponds to one
is deformation inside of .the orlglnailee subalgebra. We set of deformat|0n paramete@${ Abt’ Abt andi = 2 corre-
thus can specify DISIM into two families. sponds to the other set of deformation paramegrs!,, B,
satlsfylngAbt + A = Bt + Bf,. We then can define
4.3.1 Thedeformation group with SSM undeformed
S e
If A}, = 0, SIM is undeformed in DISIM from eq. (24), the p(z) _ pgl) (Abt )( (1) p(l)),

non-triviality condition now reads

2
2, (Atlx + AL+ AL+ Aﬁt) #0. (27)

The quadratic constrain condition becomes

such thap? - pf? = p{¥ - p” and

[bz, I0§2)] [ psl)] A&;Bh [bz, pgl) p

o p(l) )
A2 (AL + AE) = 0. Aube” + A

A (AL + A2 ) =0, (28) it 5 Sk (-1+ AL+ A) (P - P)
AL (Atlx + Aix) =0. — - A ; Bl (p(l) B (1)) P A @ + Abtp(z)

From eq. (28), the deformation group with SIM unde-
formed can be classified into two subfamiliesAg —-Al

1 @ (A, — BL) (PP - p2) + ALpl + AL p?
X!
and 2,AZ = AZ = AL =0. = p2 + Byp? + (A + AL — BYy) p2. (31)
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We therefore only consider two cases in whigh = 0 or Similar to the first case, one can arrive at a reasonable lo-
A =0. cal rotation operation by forcing the rotation generatatem

In the second subfamily, there are two deformation paramformed. The free parametdractually represents the choice
etersAl, and A}, and therefore it can be classified into the of coordinate system. This means that the representation ma

first subfamily. trices which dfferentA corresponds to can be transformed
There remain two cases to be investigam{g,z 0 forthe  from one to another by a coordinate transformation, e.g., th
first case andy, = O for the second case. matrix representation of = 1; can be transformed into ones

Let's consider the first case in whig, = 0. Denoting  of 1 = 1, by the following coordinate transformation matrix,
A = A andA; = A, the representation matrices of the

deformed generators are 1-1+42 L A2 = A2
A Ay 1 T= 1 . (36)
A -1 Ao A1 — A2 1+
rz= 1A , b= A , (32
A 1 Ay
0 0 What we need is therefore to choose an appropriaeg.,
A i ;
and the corresponding single parameter group elements are’l = %, and the representation matrices for generators are
i Ao 1 0 1+ %
¢’ cosh -’ sing Ay 0
R.(0) = €™ sing &M cosh , b, = As , P = 0 ,
e(JAl 1 A2 0 0 _%
1 0
. 37
e* coshy & sinhg (33) 0 £ (37)
¢ 0
B.(6) = o , D = 0 )
&2 sinhg &2 coshy 01 —072
1

where the deformed rotatioR, (¢) is not a merely rota-  The corresponding single parameter group elements are
tion anymore but a rotation followed by a dilatatioff e

R, (2m) = €™ is a pure dilatation whed; # 0. To keep cosh sinhe
R (9) as a reasonable local rotation operation, one demands B, (6) = & 1 1 i
A; = 0. There survives only one deformation paraméter sinho coshy
denoted byb hereafter, for this case. The representation ma- A A (38)
trix of the deformed boost operation is now of the form, A+ F4 24

coshy sinhg Pe(1) = o | P2(1) = .

2 _ 2
B, (6) = &” o , (34) 21 -7

sinh¢ coshy Note that there are manyftirent matrix representations as

an ordinary boost followed by a dilatation. a matter of fact. However, the65 representation matrices

In the second cased?, = 0. DenotingA; = A!, and of the deformed group ele_rnent§ have their origin from the
A, = A, what s diferent from the first case just investigated > % 5 representation of Poincaré group which has a special
is that there may be a group of matrix representation for thedeometric explanation. The5 representation of the de-

deformed group which is specified by a free parameter ~ formed group should have the same geometric explanation,
i.e., the upper left 4 4 part of the representation matrix rep-

Ad A —1 resents rotation and boost, the upper right 4 part repre-
r = 11 A sents translation and the lowek3. part should be kept zero.
AL The following matrix representation of the first subclass is
0 excluded with this restriction,
21 1-A+22
Ay 0 0 1
b, = Az ) (35) 0-1 0
1+A-22 2(A2- 1) 0 r,=| 10 , b, = 0 . (39)
0 1 0
0 1+2 0 A -A A
0 0
Pt = 0 o | Pz = 0 01-al which do not have an apparent geometric explanation. We
0 0 will ignore such a kind of representation hereafter.
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4.3.2 The deformation group with SM deformed

In the last section we have investigated the deformationgro
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-Al and 2. A}, = A}, = Oand

subfamily is denoted bxdisimi, in which there

in which the SIM part remains un-deformed and the corre-are 4 deform parametera},, A\, A, Af, where the de-
sponding natural representation. We are going to invastiga formed Lie algebra with an arbitrary value,egt is the same
the deformation of ISIM in which the SIM itself also deforms one up to an isomorphism only & + A is kept fixed.

and the corresponding natural representation in this@ecti There are three independent deform parameﬁ«%gs,A}t and

Like the case where SIM is undeformed, we can specif)( twoA[, + A}, actually.

We can also specify two cases further as in the last sectiahelfirst case , the independent deform parameteﬁi@rd\}t

andA{)t, and the commutation relations are

[t2. be] = (1 + Aib) ti, [to,by] = (1 + Aib) to, [rz Pl = AP [z Px] = Py + AlPx [rZ» py] = =Px+ APy (12 Pl = APz,
[bz, pt] = pz + A{)tpt» [bz, px] = (ALt - A%b) Pxs [bZ» py] = (ALt - Aib) Py, [0z, pz] = pr + ZAibpt + (Aét - ZAib) Pz

The natural matrix representation are

a—2A1+A3
b, = As— Ay
z = As -

1—(Z+2A1

1+3

1+A1

ptz »sz

A — 2

2

1+a
Al 7rZ
A3—(Z
Py =l 1A

(40)
Ao
T A1
- 1A >
Ao
g A (41)
1) pZ = )
1427 - %

whereq is a free parameter such that the matrix representatiorisfefeht values can be transformed from one to another. The

transformation matrix
ap—Q7

1+ 554

T=
_a—ag
2+2A¢

can transform the matrix representatiornof a1 to one ofe = ap. We givea a suitable value, e.gg,

ap—1
2+2A;

1
1

_ a—m
2+2A¢

(42)

A; and therefore

As— Ay 1+A; Ao
b, — As-Ay - A -1
- 1+A A3_AlA A o 1A2A ’
+ —_
1+ A o A (43)
? 1+A ?
Pe= > Px= Py =l1ea | Pe=
The corresponding single parameter group elements are
cosh(1+ Ap) 6 sinh(1 + A1) @ A+52 -5
B, (6) = &) ! P = CPo(D) = (44)
sinh(1+ Ap) 6 cosh(l+ Aq) 6 %/1 A+ %/1
In the second case of xdisim1, the deform parameteragreAl,, A, and the commutation relations are
[tr, ] = (1 + Aib) t, [t2.bg] = (1 + Aib) to, [rz Pl = AP [z P = Py + AliPx.
[rZ» py] = —px+ APy, (12 Pl = APz [bz Pl = P2+ ALpz [bz, ] = (Atz,t - Aib) Px, (45)
[bz’ py] = (Atzn - Aib) Py [0z Pz = pr+ (ZAib - Atz)t) Pt + Z(A'Et - Aib) Pz.
There are many equivalent representations and we can ch@sple one as in the first case,
Ao 0 1-Az+2A;
A2 -1 A3 - Al
r,= 1A b, = Az - Ay (46)
A2 1+ A3 2 (A3 - Al)
0 0
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whereA; represents\,, Al,, A,. For the same reason as in the last section, it is requirédtiogal rotation operation should
not have an additional dilatation transformation conesé, = 0. Hence the deformed group element is

coshw + 4= sinhw LA sinhw
B (0) = &A= 1 . : (47)
T2 sinhw coshw — 53¢ sinhw

wherew = (1+ A1)6. Note that the boost operation does not have an additiomainaganied dilatation operation when
As = A;.

The second subfamily is denoted by xdisim2, in which theneaia three deform parameteA;},o, A, Aét' for Al = A, =
0, A, = ZAib, and the commutation relations become

[t b = (1+ AL )ty, [to.by] = (1+ AL ) to, [t p] = (1+ 2A%) pr— po [te. p] = (1+ 2AL) ps.
L, py| = (1 + ZAib) P — Pz [t2, Pe] = (1 + ZAib) Py [rz P = Ape [rz el = py + AP,

(48)
2, Py| = —Px+ A}tpy [rz, pz] = A}t Pz, [bZ’ =pz+ A{)t sz px] = (Aib + ALt) Px»
bz py| = (Al + A, ) py. [bz p] = (1+2A% ) +(2AL, + Am) Pz.
There are many equivalent natural representations of #farshed group, one of which is as follows,
A2 2A1 + A3 1+ 2A1 0 2A1
A2 -1 Al + A3 0
r,= 1A , b, = A1+ As , Pz= 0 . (49)
AZ 1 A3 01
0 0 0

The deform parameter in the rotation generator is suppadeg zero for the same reason that we need a resonable |cat#dmot
operation. Now we arrive at the natural representation®figformed single parameter group element,

1124
1+A L Tia; Sinhw 2A11

B, (0) = efAd 1 L P () = : (50)
A

coshw + sinhw

l .
TAl Slnhw

wherew = (1 + Ap) 0. Note that the boost operation does not have the additiacahapanied dilatation whely = —A; similar
to in the previous cases.

4.4 The deformation of IHOM tersA},, A%, the other is denoted by dihom2 wigf, = -
and has two deform parameték%, A;
The commutation relations for dihom1 is

[bz, pt] = pz + AP+ AL Pz,

The Lie algebra of semi-direct product of HOM with T(4) has
the following commutation relations,

B;Eji Py Hi pt} _ Hi Bﬂ iy [t Pl = o= e (b, Pl = e+ (A + 2A%) P2 — A, (51)
|tz. y| = Pt = Pz [bz Pl = Pzv [bz P2l = [0, Pl = (A + A5) P [b ] = (A + A5) By

The deform group DIHOM of IHOM which keeps HOM un- Note that any value of, whenA, + A;, is kept fixed gives

deformed has four deform parameters which satisfy three secfhe sadme d(laforrlne?) Llev?llge;]bra ]{USt as wha(t) hsppenis in de-
ond order constrain conditions ormed sim lie algebra. We therefore takg ote also

that the commutation relation of dihom1 is almost the same as

A}yAgt = AiyAlZ)t = A5, (Aét ¥ AlZ)t) =0, one of the deformed isim algebra with sim part invariant. The
o - difference is that dihom1 has one less generators than disim.
and the non-triviality condition The deformed part of the natural representation of dihom1 is
1 b )2 2 A 1
(Aly + Azr) + (A{Jt + Aﬁt) # 0. 1 A,
It can be classified into two families. One is denoted by b, = 1 A1 A | (52)

dihom1 with Aiy = Agt = 0 and has two deform parame- 0
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which is apparently the same as in disim1. Takikig= 0 is has the following commutation relations,
another choice and the natural representation of defoomati

part is
b, = Lo A A oA , (53) [tz, py] =p—p.+ (ZAiy + Agt) to, [to, Pzl = py + Abby,
+ A 1
0 [tl’ py] = A%ytl’ [py, p‘] = (A%y + Agt) P+ Aiypz’
which is the same as in disim2. [y x| = (AL, + AY) . [Py o] = (AL, + A ) b + AL .
There is another deformation group DIHOM2 of IHOM, (54)

which is not isomorphic to DIHOM1 and its deformed part The natural matrix representation therefore can be solsed a

1 Yy 1 1
t 1 1 b. ’ 0
2 = 9 - )/ k) pt = - 9
1 S
-0 -0 0%
55
-vA2 A (°5)
1 —’}/Az
px=1| o , Py = 0— vy~ 1 , Pz= o |1,
* LA VA ’ 1
-0 - ’}/Az

wherey is an arbitrary parameter arfd= A; + A;. Here we only list the matrices for deformed generators. eNbat
regardless of the value ¢f the (§5) element of eitheb, or py is nonzero. Moreover, the 5th row tf is non-zero. So the
matrix representation of dihim2 isféérent from the ones of various deformed Lie algebra. Theesponding representation
spacetime is apparently curved globally. Note also thatd¢peesentation with dierenty is inequivalentin general. Take= 0,
and we have

1 A1 1
1
t2: 1 1 , = 6 1 ,pt: —6 ,p: 6 ,p: 6 . (56)
-1 S Y " ’ 1
=t -0 -0
The representation of dihom2 is totallyfi@irent from one of dihom1.
|

4.5 The deformed group of TE(2) The DTE therefore can be divided into several families simi-

Just like HOM group, the E(2) group is also the subgroup ofIar to V\tlhat hzappens |1n DISlM ang DIHOM. )
Lorentz group with three generators. The corresponding Lie 1 Ay + Aft # 0, Ay = A = A5 =0, the gorrespondmg
algebra is e(2). The semiproduct of E(2) and T(4) is denotedi€formed _Lle alge_bra is denoted by dtel with the following
by TE, and its Lie algebra is denoted by te with the commu-commutation relations,

tation relations,

_ At z _ t z
[t 2] = ~to, [t ] = [ta, po] = Px. vz Pil = A+ A? P Erz’ Pl = Py (B A7) P
t17 pX] = pt - pZ7 [t2» rZ] = tl» [rz’ py] - _px * (Aft * Aft) py, (60)
(57) [rz, Pz] = AGpe + (AL + 2A%) Pz

[
[to, pe] = [t2, P2l = By, [tz Py] = Pt = Pos
[rz Px] = Py, [rz, py] = —Px. The non-triviality condition is now

The deformed TE is DTE with 5 deform parameters . 212 . a2 \2 ;2

AL, AL, AZ, AL, A% under the second order constrain con- (At Ar)™ + (A + 2A)7 + (A" + (A" # 0. (61)

ditions,
The matrix representation is

{Ait (A +A) =0, AL (A +A) =0, (58)

A (Azt + Aft) =0, A%tAtXx =0. Aq -A

The non-triviality condition is - X AL "i Ao A1_+1A2 | 62)
2 2 2 1t 2A2

(Al + A + (AL + 2A%)° + (AK) + (AL, - A%) # 0. (59) 0



868 Zhang L.etal.  Sci China-Phys Mech Astron  May (2014) Vol. 57 No.5

whereA; = Al, andA; = A%, while the corresponding group have additional accompanied dilatation as in disim. More-
element as: over, the rotation itself is not only a rotation in tlg plane
1- A0 -Ax6 but also rotation in the rotated plane.
cosf —siné
Re(6) = ey sing cosd - (63) 2. A+ Ay =0, A, = 0, the corresponding Lie alge-
Aot 1+ A0 bra is denoted by dte2. There are three deform parameters
Itis apparentthat the rotation operation changes alotamd m Al,, AL, AX and the commutation relations are

|
[rzo o] = Ay (pe= P2 [z Pad = Al (B = P2). [P Pl = Aty + AP [P py| = Atz + AXpy.

(64)
[Pt Pal = A5 (P2 = P [Pz Pxl = Aty + AP [Pz Py = Alite + APy,
which can be simplified further by a linear transformatiohia algebra
1
1

12 -1
T= 1 . 65
L (65)

1
1

The new set of generators aftertransformation dfers from the old only withr, replaced by}, = r, + 2(p: — pz). Then the
new commutation relations are

:tl, o = [te, rz] + A([te, pe] = [t1, P]) = [t1, r2z] — A(Px — Px) = [t1. 2],

2,17 = [t2. rz] + A([t2. pi] = [ta. Pe]) = [ta. 12| - ﬁ(py - py) = [to, 14],

12 Pt = [rz ] + AP P2 = Al (= P2 + ARG (P2 — P) = (A — AAS) (P — P2 » (66)
> Pz| = [

r
r

s 2 el + A[Pr. el = AL (pr = P2) + AAG (P2 = ) = (A — AAL) (Pt — P2) -
1% Px| = [rz, Px] + A([Pt, Px] = [Pz Px]) = O, [r;» py] = [rz’ py] + /l([pt» py] - [pZ» py]) =0,

i.e., the commutation relations are almost kept unchanged e relations are
cept [, pi] and [r}, p]. Define At = Al — 1A, the new

commutation relations are {Dt» Dx]] = :ttlxt(l + A'(XXF))X’ [0 py| = AlLte + A%y, )
P, Pzl = AL (P2 — 1),
[ro P = At =) = A=) (=pds o [papd = Al AP [P By = Atz + Ay
|5 02| = A (- p) = (AL - AA%) (Pt - po).

In the perturbation expansion of its matrix representatios
HenceA!, and A%, are not independent parameters. We canfirst order of someX, in eq. (17) does not give contribution
specify two subfamilies of deformation group DTEZ2 further. but their second order does, i.8% = a7?, A% = gr. There
One subfamily is denoted by dte2a in whigh, AX aretaken are two inequivalent representations for this subfamilgeO
as the independent parameters. The deformed commutatids

a+26 a 1 -B
IBB B-A; B-—A 1
S RV Iy W B
0 0
(69)
a+A; a—-28+A; -B
B
Pz = B .y =|B-A B-A2 1],
2,3—(1—2A2 4,3—(1—2A2(]). ﬁ

0
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whereA; = AL, A, = A%, a is a free parameter agfisatisfiess? — Ap8 + A = 0. It can be simplified by setting = —%,

R -
8 B-A B-Ax 1l
pt - _& 2'8_ Ay s pX - ﬁ ’
2 2 0 0 (70)
T, Y %
Pz = B s Py =|B-A B-Ax 1l
2B-% 4p-F1
2 2 0 0
The other kind of representation is
Y y-A 1l A=A
A A=A A-A 1
pt = /l s p = s
Q0—y-A, 21—y g Ap— A
0
(71)
A=A 4 A YA
py: A—Az /l—Az 1 , Pz = A s
A -2 20-v-A 21—y
0 0
wherey is a free parameter antsatisfiest? — Ay + A; = 0. Settingy = 4, it is simplified as:
A A-Ay 1 A=A
A A=A A-A 1
p[ = /l ) pX = s
A=A A Ay -2
0 0
(72)
A=A A A=A
A
py=|1-A2 A-A 1], p;= A
Ay -2 A=A A
0 0

It is apparent that the translation operations are entdnwiih t; andt, operations together in both representations.
The other subfamily is denoted by dte2b in whigh andA!, are taken as independent deform parameters. Its commutatio

relation is
[rz, pt] = AEt(pt - P2, [rz P = AEt(pt - P2,
[P Pl = Alts, [P py| = Ao, [Pz Pl = Aty [P By| = Alta.

dte2b does not have a natural representation which is ancamts deformation from the representation of Poincarémro
Moreover we can observe that the deformation group is mkedylian isometry group of curved spacetime and the rotation
operation does not seem compact anymore. We can ignorerhi®kdeformation group of E(2).

3. Al + A; = 0, A% = 0 and the corresponding Lie algebra is denoted by dte3 witketleform parametera],, Al, and
Al. The commutation relations are

(73)

[t pt] = px + Aittl, [t pz] = Px + A%ttl, [rz, pt] = [rz o = A (Pt = P2), [z ] = py — A}ttz, 74
[r2 By = —Px— ALy, [P ol = AL (- P2, [P Pl = [P Pl = Al [P py| = [po py] = Ao - ALy (7Y
As in the case of dte2, dte3 can be specified into two subfesnior there is only one independent parameter fArand A7,
via the linear combination between generators V\mﬁm 0.
The first subfamily is denoted by det3a, in which we ta!l{g Al as deform parameters and the deformed commutation
relations are
[to, p] = px + Afta, [t1, P2l = px+ Afta, [z, pxl = py — Aita, [fz, py] = —px— ALty

75
[0t Bl = [Pz Bl = Alts, [P P2l = A (= p2). [ py] = [P py] = ALt — ALy 79
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Like what is encountered in dte2, the first order of sdfhén eg. (17) does not give contribution but their second odiers to
the perturbation expansion of its matrix representatidrer@ are two inequivalent representations for this kinee flist one is

2+ B 1 -A1 -«
a 1% al
pt = a s p = s
Al-B  A+20-p g A+ a
0 0
(76)
- ﬂ - Al ﬂ - Al - 20’
a
py=|A+a Ar+a l|, p,= a ,
[0 2A1—,3+2& 2A1—,8+4a1
0 0
whereg is a free parameter andsatisfiesA, + a (Ay + @) = 0. By takingB = %, it is simplified to
20 + 4 A1 AL -«
a a al
pt = a 9 = k)
A o+ A " A +a
2 2 0 0
(77)
—a -4 20 -4
[07
=|A1+a Al+a l|, p,= a
> ' o« > 20 + 2t da+ 31
0 0
The second representation is
A Ar+a1 y
Y Y y1
P = Y » Px = )
Al+2y-2 2y -2 * -y
0 0
(78)
A]_ +vy A Al +A
Y
py=|AL+y Ai+y 1), p;= 4 ,
A1 —vy Ar+2y-2 2y-21
0 0
whereA is a free parameter andsatisfiesA; + y (A1 + y) = 0. By takinga = v, it is simplified to
Y Aty 1l Y AL +y Y A+y
4 4 y1 A A L 4
pt= y ’p)(: ’pyz l+y l+y ’pZ= y .
ALty Y -y AL -y ALty y 1
0 0 0 0
(79)

It is apparent again as in the DTE2a that the translationatjpsis are entangled with andt, operations together in both
representations.

The second subfamily is denoted by dte3b, in which we #ikeAl as deform parameters and the deformed commutation
relations are

[r2 B = (12 P2l = Al (P = ) [P Pyl = [P Pl = Aldtas [P py| = [P Y| = At (80)
the corresponding deformed matrix representation is
Al A A A Ad
-A -1 A -Ar 1l Ay
pt = —A]_ , I = 1 S pX = s pz = —Aj_ s
A1 —2A; A Ay A Ay -2A; 1
0 0 0 0

(81)
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where the single parameter group element representation co By the second way, by taking= —« if A; > 0, we have

responding ta; is

a 1 —a
1+ A0 A0 Py = ¢ 1 Px = ¢ 0 !
cosd —sing o I o |’
R (6) = sing cosh ’ (82) 0 0
—As0 1- A0 (87)
- -
a reasonable rotation operation not only in #yeplane but 0 0
also in the rotatetk plane as in DTE1. The translation oper- Pby=1a 0 1. p.= o 0 s
ations are entangled with andt, operations together again. 0 0

The common features of DTE are that the rotation opera- 5
tion is not only in thexy plane but also in the rotatézplane ~ Wherea” = As.

and the translation operations are entangled tyigmdt, op- The second family of deformation, denoted by diso(3)2,
erations together. consists of deformation with deform parametées = Aj.

The deformed commutation relations are

[Pt pi] = Api, i =XY,2 (88)

SO(3) group has three generatogs ry, r,. The deforma- There are three kinds of representation therefore. The de-
tion of its semi-direct product witfi (4) has two deform pa- formed representation matrices are
rametersAy, A;’;y, where 3 represents. The second order 1.

4.6 The deformation group of ISQ(3)

constrain condition is @ AL 1
= A , 89
RA =0, (83) P A (69)
0
The deformation group DISO(3) therefore is specified into o
two classes. The first class is denoted by diso(3)1, in which _A 1 0
the deform parameter is takenAs= Aﬁy and the commuta- ! 0 A 1
tion relations are = 0 , Dy = 0 ,
Pt 0 Px 0
[pxs py] = Aafz, [Pz Px] = Aaty, [py’ pz] =Airx. (84) 0 (90)
0 0
The natural matrix representation is 0 0
= —A]_ 1 , p = 0 .
@ 1 B P 0 T -A 1
1% a 1 0 0
= = 0
pt a . ) pX 0 ) 3
0 2A 1
, , (85) ' ° 1
0 O pt = Al ) pX = O )
py=|a 1], p.= 0 , AL 0 0
0 0 0 «a 0 a
0 0
wherea andg satisfyaeB + A; = 0. Hence there are two ways Py = 0 1, p,= 0 ,
to get simplification. 0 0 0 (—')L

By the first way, by takin@ = « if A; < 0, we have
whereq is a free parameter and can be takea# all of

@ 1 @ the three cases.
a a 1
pt = a 1) pX - O 1) .
a 0 0 4.7 The deformation of 1ISQ(2, 1)
o N (86)  Let us investigate the deformation of semi-product of three
0 0 generators Lorentz subgroup SO{2with T(4), DISO(2 1),
py=|a 1}, p.= 0 , at last. The three generators of SCiparery, by andb,.
0 0 @ é DISO(2 1) has two deform parametef§, andAZ, where 2

representdy, and a second order constrain condition,

AExAtzy =0. (92)
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Thus DISO(21)1 is specified into two families.

The first family is denoted by diso(2), in which the de-
form parameter is taken @5 = A} and the deformed com-
mutation relations are

[Py = Asby. [P Pl = Asbz [Py P2 = ~Aure (93)

as well as the representation is

a a 1
a 1 B
= a . = O .
Px N Pt 0
0 94
0 0 (94)
-B L 0 -B
= a R = .
Py 0 Pz a 1
0 0

wherea andg satisfyaf + A; = 0. Thus it can be simplified
according to the value d4;.

WhenA; > 0, we can tak@ = —a and get

@ @ 1
1% 1 —a
Px = @ s Pe= o |
g 1% 0
0 95
0 0 (95)
07 [07
= [0 1 y = 0 ,
Py o | ™ a1
0 0
wherea = + VA,
WhenA; < 0, we can tak@ = a and get
@ @ 1
a 1 10
Px = @ s Pe= o |
X a 0
0 96
0 0 (%6)
(04 (04
= a 1 . = 0 .
Py I p 1
0 0

wherea = + V-A;.

The second family is denoted by dispf32, in which the
deform parameter is taken Ag = Al, and the deformed com-
mutation relations are

[px Pi] = —Aupi, i =ty,2 (97)
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as well as the representation is

a—- A 0« 1
8 1 0
Px = a—- A , Pt = 0 ,
* a-A 0
0 0
0 0
0 0
| @0 1|, p,= o |
Py 0 ’ @ 01
0 0
(98)

wherea andg satisfya(a — 8) = 0. Thus it can be simplified
in two ways.

By the first way,a = 0 and hence only the representation
of px is deformed,

—A;
A 1
—A;
—A;
0

(99)

Second, we take = B8 = A, the representation is simplified
as:

0A 1 0
0 A1
_ 0o | .p= o |,
Pt 0 Px 0
0 0 100
0 0 (100)
0 0
| a0 1] p,= 0
Py o |'™ AL 01
0 0

4.8 Summary, conclusion and outlook

Now we investigate the deformation the semi-product of all
of three and four generators Lorentz subgroups with T(4) and
obtain their natural representations. We list the defoionat
classification and the brief remark on their characters and
their natural representations in Table 1.

In summary, the deformation of Poincaré group itself is the
de Sitter group which is the isometry of maximal symmetric
space of four dimensional spacetime, i.e., the isometrygro
of a curved de Sitter spacetime.

The deformation of ISIM can be classified into two fam-
ilies. One family is DISIM, in which SIM part is unde-
formed. There are many equivalent deformations which are
connected with each other by redefinition of generators. For
some cases there are a family of equivalent natural represen
tations. The rotation and boost operation obtain additiaca
companied scale transformation in all cases. The other fam-
ily, in which the SIM part is deformed, can be divided into
two subfamilies. The first subfamily is XDISIM1. Similar
to family DISIM, there are also many equivalent deforma-
tions which are connected with each other by redefinition of
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Table 1 The deformation of semi-product Poincaré subgroups

Deformation Deformation Natural «
Subgroup family subfamily rep. Remar
Poincaré de Sitter de Sitter 1 the isometry group of maxsyaimetric space of 4-spacetime
DISIM DISIM 1 much equivalent deformation corresponding to generatatsfinition
(SIM undeformed) additional accompanied dilatation for rotation and bogeration
XDISIM1 much equivalent deformation corresponding to generatatsfinition
ISIM XDISIM1 1
(SIM deformed) additional accompanied dilatation for rotation and bogesration
XDISIM2 additional accompanied dilatation for rotation operation
XDISIM2 1
(SIM deformed) additional accompanied dilatation for boost operation
DIHOM1 DIHOM1 much equivalent representations corresponding to gemenadefinition
(WDISIM) (WDISIM) 1 additional accompanied dilatation fobbst operation
IHOM same structure as the corresponding part of DISIM
DIHOM2 DIHOM2 1 no natural representations inherited from Poincaré group
(DIHOM) (DIHOM) additional accompanied dilatation for bstmperation
additional accompanied dilatation for rotation operation
DTE1 DTE1 1
rotation operation not only iy plane but also in rotatet plane
DTE2 DTE2a 2 translations are entangled wittandt, operations
TE(2) DTE2b 0 no natural representation inherited from Poingao&ip
DTE3a 2 translations are entangled wittandt, operations
DTE3 translations are entangled withandt, operations
DTE3b 1
rotation operation not only iy plane but also in rotatet plane
inequivalent representation corresponding téedént signs of deform parameter
DISO(3)1 DISO(3)1
only translations operations deformed
ISO(3)
three inequivalent representations
DISO(3)2 DISO(3)2 3
only translations operations deformed
inequivalent representation corresponding téedéent signs of deform parameter
DISO(2 1)1 DISO(21)1 1
only translations operations deformed
ISO(2 1)
two inequivalent representations
DISO(2 1)2 DISO(21)2 2

only translations operations deformed

generators. There are also a family of equivalent natupalre  The deformation of TE with E(2) part undeformed can be
resentations. Both deformd&y and deformed; obtain ad- classified into three families. In the first family DTE1, de-
ditional accompanied scale transformation. The second sulformed rotationR; is not only a rotation in thexy plane but
family XDISIM1 also has a family of equivalent natural rep- also a rotation in the rotated plane and obtains additional
resentations and both deformBg and deformed; obtain accompanied scale transformation. The second family DTE2
additional accompanied scale transformation. The defdrmeis further divided into two subfamilies. For the first subfgm
rotation operation can be a meaningful rotation only iftie a DTEZ2a, there are two inequivalent natural representations
ditional accompanied scale factor is one, i.e, the cornedpo which only the translation operators are deformed and the de
ing deform parameter vanishes.
The deformation of IHOM with HOM part undeformed andtz. The second subfamily DTEZb does not have a natural
is classified into two families. The first family is DIHOM1 representation. Like DTEZ2, the third family DTE3 has two
which is the same deformed group XDISIM1 short of one subfamilies. Just like DTEZ2a, the first one DTE3a has two
The natural representation is the same asinequivalent natural representations in which only thesra
XDISIM1. The other family DIHOM2 is totally dierent lation operators are deformed and the deformed translation
from DIHOM1. The 5- d representation of DIHOM2 re- Operators are translation entangled witlandt,. In the sec-
veals that it is not the natural representation inheritechfr ~ ond subfamily DTE3b, the deformed translation operatas ar
Poincaré group. The DIHOM2 should be the symmetry grouptranslation entangled with andt, and the deformed rotation
of a curved spacetime similar to de Sitter group. R; is not only a rotation in thexy plane but also a rotation

generatorr,.

formed translation operators are translation entang|éutyvi
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in the rotatedz plane without additional accompanied scale 3

transformation.

The deformation of 1ISO(3) with SO(3) part undeformed 4
can be classified into two families. In the first family
DISO(3)1, there are two inequivalent natural represemtati
which correspond to the sign of the deform parameter and 5
only the translation operators deform. In the second fam-
ily DISO(3)2, there are three inequivalent natural repnése

tions in which still only the translation operators deform.

Very similar to the case of 1SO(3), the deformation of
ISO(2 1) with SO(21) part undeformed can be classified
into two families. The first family DISO(2L)1 is similar to

the case of DISO(3)1 while theftierence is that DISO(2)2
has two inequivalent natural representations.

With these detailed representations and deformed as well
as undeformed operators’ formalism, one can search the ge}0
ometry whose metric function is invariant under the action 1
of the specified semi-product POincaré subgroup and its de-
formed partner and then construct the field theory in space-,
time related to the invariant metric function. This procexu
will build up the field theory realization of Cohen-Glashew’
proposal of VSR. In our subsequent work we will present the
search for invariant metric function and the constructibn o , ,

field theory.
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