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We investigate here various kinds of semi-product subgroups of Poincaré group in the scheme of Cohen-Glashow’s very special
relativity along the deformation approach by Gibbons- Gomis-Pope. For each proper Poincaré subgroup which is a semi-product of
proper lorentz group with the spacetime translation groupT (4), we investigate all possible deformations and obtain all the possible
natural representations inherited from the 5− d representation of Poincaré group. We find from the obtainednatural representation
that rotation operation may have additional accompanied scale transformation when the original Lorentz subgroup is deformed and
the boost operation gets the additional accompanied scale transformation in all the deformation cases. The additionalaccompanied
scale transformation has a strong constrain on the possibleinvariant metric function of the corresponding geometry and the field
theories in the spacetime with the corresponding geometry.
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1 Introduction

The local Lorentz symmetry and CPT invariance is one of
the fundamentals of modern physics. The theoretical inves-
tigation and experimental examination of Lorentz symmetry
have witnessed considerable progress and attracted a lot ofat-
tentions since the mid of 1990s. It is inevitable to encounter
quantum gravity in the exploration of the theoretical frame-
work of high energy physics, especially around the energy
scale near Planck scale. Different quantum gravity models
neither exclude Lorentz violation nor predict it conclusively.
Some high energy models of spacetime structure, such as
non-commutative field theory, do, however, explicitly con-
tain Lorentz violation. So the possible Lorentz violation is an
important theoretical question [1].

There are many attempts to investigate the possible

*Corresponding author (email: xxue@phy.ecnu.edu.cn)

Lorentz violation from theoretical aspect [2–6]. Because at
low energy scales, parityP, charge conjugationC and time
reversalT are individually good symmetries of nature while
there is evidence ofCP violation for higher energies, one may
consider the possible failure of Poincaré symmetry at such
high energy scales. One theoretical possibility is that the
spacetime symmetry of all the observed physical phenom-
ena might be some proper subgroups of the Lorentz group
along with the spacetime translations only if these kinds of
proper subgroups of Poincaré group incorporating with ei-
ther of the discrete operationsP, T , CP or CT , can be en-
larged to the full Poincaré group. The Very Special Rela-
tivity (VSR) proposal by Cohen and Glashow is based on
these smaller subgroups [7]. Cohen and Glashow argued that
the local symmetry of physics might not need to be as large
as Lorentz group except its proper subgroup, while the full
symmetry restores to Poincaré group when discrete symme-
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try P, T , CP or CT enters. The Lorentz violation is thus
connected with CP violation. Since CP violating effects in
nature are small, it is possible that Lorentz-violating effects
may be similarly small. They identified these VSR subgroups
up to isomorphism as T(2) (2-dimensional translations) with
generatorsT1 = Kx + Jy andT2 = Ky − Jx, whereJ andK
are the generators of rotations and boosts respectively, E(2)
(3-parameter Euclidean motion) with generatorsT1, T2 and
Jz, HOM(2) (3-parameter orientation preserving transforma-
tions) with generatorsT1, T2 andKz and SIM(2) (4-parameter
similitude group) with generatorsT1, T2, Jz and Kz. The
semi-direct product of the SIM(2) group with the spacetime
translation group gives an 8-dimensional subgroup of the
Poincaré group called ISIM(2). The spurion strategy can also
be applied to VSP. The invariant tensor for group E(2) can
be a 4-vectorn = (1, 0, 0, 1) while the symmetry groups T(2)
admits many invariant tensors. There is neither invariant ten-
sors for HOM(2) and SIM(2) nor the local Lorentz symmetry
breaking perturbative discription for either of these groups.

Inspired by the fact that Poincaré group admits the unique
deformation into de Sitter group, Gibbons, Gomis and Pope
find that the subgroup ISIM(2) considered by Cohen and
Glashow admits a 2-parameter family of continuous defor-
mations which may be viewed as a quantum corrections
or the quantum gravity effect to the very special relativ-
ity, but none of these give rise to noncommutative trans-
lations analogous to those of the de Sitter deformation of
the Poincaré group: space-time remains flat. Among the 2-
parameter family of deformation of ISIM(2), they find that
only a 1-parameter DISIMb(2), the deformation of SIM(2),
is physically acceptable [8]. The line element invariant un-
der DISIMb(2) is Lorentz violating and of Finsler type, ds2 =
(

ηµυdxµdxυ
)1−b(

nµdxµ
)2b

. The DISIMb(2) invariant action for

point particle and the wave equations for spin 0,1
2 and 1 are

derived in their paper. The equation for spin 0 field is in gen-
eral a nonlocal equation, since it involves fractional evenir-
rational derivatives.

The cosmological principle is the foundation of the stan-
dard cosmological model, theΛCDM model, which assumes
that the universe is isotropic and homogeneous at large scales.
However, there are evidences which challenge the standard
ΛCDM model in the cosmological and astronomical obser-
vations. These observations can be summarised as CMB
multipole alignments, QSO polarization alignment and large
scale bulk flows along a preferred cosmological axis [9]. The
Planck satellite has found deviations from isotropy (around
3σ) by the CMB anisotropy observations recently [10]. The
Finslerian geometry is naturally employed to account for this
kind of anisotropic spacetime structure. The extensions of
Einstein gravity theory to Finslerian type of geometry of
spacetime have been proposed in recent years [11,12]. The
FRW like spacetime and the refinement to the Schwarzschild
solution in these Finslerian gravity frameworks are investi-
gated. The DISIMb(2) invariant Finslerian metric by Gib-

bons, Gomis and Pope’s deformed very special relativity ap-
proach is employed in the investigations of anisotropy in
FRW like cosmology, which leads to the Lorentz violating
cosmology acceleration, and Lorentz violation as the trigger
of density inhomogeneities to the cosmological fluid [13,14].
It is investigated that Randers spacetime with local symmetry
group TE(2) can possess local symmetry of the generic VSR
proposed by Cohen and Glashow and the implication of wich
to type Ia supernovae [15] .

In this paper we follow Gibbons-Gomis-Pope’s approach
on the deformation of ISIM(2) and investigate the deforma-
tion of all such kinds of subgroups of Poincaré group which
are the semi-product of three generators and four generators
Lorentz subgroups with the spacetime translation group T(4)
(semi-product Poincaré subgroup) and the five dimensional
representations, which are inherited from the five dimen-
sional representation of Poincaré group, (the natural repre-
sentation) of all the semi-product Poincaré subgroup as well
as their deformed partners. We find that the deformation
of semi-product Poincaré subgroup may have more than one
families that are physically acceptable. There may be more
than one inequivalent natural representations for one family
of deformation of a specific Poincaré subgroup. Usually the
deformation of the original Lorentz subgroup part causes the
rotational operation an additional accompanied scale factor
which is not reasonable, for we believe that the departure
from Lorentz symmetry should be from boost rather than
rotational operation. Anyhow, most deformed boost opera-
tions do indeed have an additional accompanied scale fac-
tors which will play a key role in the search for group action
invariant geometry and construction of field theories in the
spactime of the invariant geometry.

2 Deformation of Lie algebra

The deformed Lie algebra or Lie group is extensively investi-
gated [16,17]. Let’s give here a short review on the deforma-
tion of Lie algebra according to Gibbons-Gomis-Pope. For a
Lie algebra with commutation relations,

[

Ti, T j

]

= Ck
i jTk, (1)

we suppose that the structure constants of deformed Lie alge-
bra is of the form

Ĉk
i j = Ck

i j + tAk
i j + t2Bk

i j + · · · (2)

Here t represents the deformation parameter. The constrain
on deformed structure constants from Jacobi identity

[[

Ti, T j

]

, Tk

]

+
[[

T j, Tk

]

, Ti

]

+
[

[Tk, Ti] , T j

]

= 0 (3)

has the form

Ĉm
l[kĈl

i j] = Ĉm
lkĈl

i j + Ĉm
li Ĉl

jk + Ĉm
l jĈ

l
ki = 0. (4)

The expansion of deformed structure constant with the power
of t yields

t
(

Am
l[kC

l
i j] +Cm

l[kAl
i j]

)
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+ t2
(

Am
l[kAl

i j] + Bm
l[kC

l
i j] +Cm

l[k Bl
i j]

)

+ · · · = 0. (5)

If there exists a family of deformed Lie algebra parametrized
by a continuous variablet, there should be a group of con-
strained equations which arise from every power oft in the
above equation, as:

Am
l[kC

l
i j] +Cm

l[kAl
i j] = 0, (6)

Am
l[kAl

i j] + Bm
l[kC

l
i j] +Cm

l[k Bl
i j] = 0, (7)

and etc.
To avoid trivial deformation which arises merely from a

change of basis in the original Lie algebra, one demands
that there should not be a transformation of basis of Lie al-
gebraS υµ = δ

υ
µ + tφυµ + · · · ∈ GL (n,R), such thatĈk

i j =

S k
cCc

ab

(

S −1
)a

i

(

S −1
)b

j
and hence

Ak
i j = φ

k
l C

l
i j −Ck

l jφ
l
i −Ck

ilφ
l
j. (8)

Defineλµ as the basis vector of the original Lie algebra
(the left invariant 1-form), thendλi = − 1

2Ci
abλ

a ∧ λb [1,7].
We can define the vector valued one form fieldΦa = φa

bλ
b

and 2-form fieldAa = 1
2Aa

i jλ
i ∧ λ j andBa = 1

2 Ba
i jλ

i ∧ λ j as

well as a matrix valued 1-form fieldCb
a = λ

cCb
ca. So we have

the covariant exterior differential operator of the present Lie
algebraD = d + C∧, the formula (6) can be rewritten as:

DAa = 0, Aa
, −DΦa. (9)

The Jacobi Identity requiresD2 = 0, then

DBa + (A • A)a = 0, (10)

where(A • A)a = 1
2Aa

b[c Ab
de]λ

c ∧ λd ∧ λe. The equation is
solvale ifD(A • A)a = 0.

If we set A • A = 0, we find that the second order term
of deformation will also satisfy eq. (9). Then the acceptable
form of Bµ is the same as one ofAµ. It is enough to consider
the first order deformed term only.

3 The proper subgroups of Lorentz group

The Lorentz Lie algebra has the following Lie sub-algebras
up to isomorphism.

• Lie subalgebra with a single generator.

• Two Lie subalgebras with two generators: span{rx, bx}
and span

{

rx + by, bz

}

. The corresponding commutation
relations are

– span{rx, bx}: [rx, bx] = 0.

– span
{

rx + by, bz

}

:
[

bx + ry, bz

]

= bx + ry.

• Four Lie subalgebras with three generators:
span
{

rx, ry, rz

}

, span
{

bx, by, rz

}

, span{t1, t2, rz} and
span{t1, t2, bz}, wheret1 = bx + ry and t2 = by − rx.
The corresponding commutation relations are

– span
{

rx, ry, rz

}

(the so(3)):
[

rx, ry

]

= rz,
[

ry, rz

]

=

rx,
[

rz, rx
]

= ry.

– span
{

bx, by, rz

}

(the Lorentz algebra in 2+1 di-

mension):
[

bx, by

]

= −rz,
[

by, rz

]

= bx,
[

rz, bx
]

=

by.

– span{t1, t2, rz} (the 2 dimensional Eudlidean alge-
bra e(2)): [t1, t2] = 0,

[

rz, t1
]

= t2,
[

rz, t2
]

= −t1.

– span{t1, t2, bz} (2-dimensional orientation pre-
serving transformations group HOM(2)): [t1, t2]
= 0,

[

bz, t1
]

= −t1,
[

bz, t2
]

= −t2.

• One Lie subalgebras with four generators: span{t1,
t2, rz, bz} (the 2 dimensional similitude group SIM(2))
with commutation relations [t1, t2] =

[

rz, bz
]

= 0,
[

rz, t1
]

= t2,
[

rz, t2
]

= −t1 and
[

bz, t1
]

= −t1,
[

bz, t2
]

=

−t2.

The Lie subalgebra span{rx, bx} is isomorphic tot(2) =
span{t1, t2}, and they are both isomorphic to the 2 dimen-
sional translation group T(2).

We will call the subgroup of Lorentz or Poincaré group as
Lorentz or Poincaré subgroup for brevity.

4 The deformation group of the semi-product
subgroups of Poincaŕe group

Poincaré group is the semi-direct product of Lorentz group
with the translation group. Lorantz group is the normal sub-
group of the Poincaré group which is generated by six gen-
erators, three rotation generatorsrx, ry, rz and three boost
generatorsbx, by, bz. The semi-direct product of subgroup
of Lorentz group with translation group is also the subgroup
of Poincaré group, which makes up one type of Poincaré sub-
groups. We will concentrate our attention on this type of sub-
groups and it is this type of Poincaré subgroup that Cohen
and Glashow employ in their very special relativity proposal.
The deformation groups of this type of subgroups can also
be divided into two kinds. One kind consists of the semi-
direct product of the deformation of Lorentz subgroup SL
with T(4), which is regarded as the locally deformed group,
while the deformation group of the other kind does not pos-
sess the semi-direct product structure, which is regarded as
the globally deformed group. Among the globally deformed
groups, the Lorentz subgroup does not deform in the first
class but it will deform in the second class. We will concen-
trate on the first class of globally deformed groups, in which
the deformation part comes from the intercrossing between
Lorentz subgroup and the translational group and the transla-
tional group itself. The deformed group thus obtained does
not have the semi-direct product structure of the Lorentz sub-
group with the deformed translation group. Similar to the
decomposition of Poincaré group into the Lorentz group, the
local symmetry group, and the translational group which con-
nect the local properties within a neighborhood, the deformed
Poincaré subgroups can also be decomposed into two parts,
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one describe the local properties of the spacetime and the
other part reflects the global properties of the spacetime to
some extent. We mainly concentrate our attention on that
kind of deformed Poincaré subgroups in which the Lorentz
subgroup part is not deformed so that the local property of
spacetime is the same as described in VSR.

From eq. (10), we obtained a constrain condition

D(A • A)a = 0. (11)

The simple solution
A • A = 0 (12)

is a solution that satisfies all the constrain condition at all
nonlinear orders. Then the constrain conditions from Jacobi
Identity (10) can be written as:

DBa = 0, (13)

i.e., the second order deformation of structure constantsB sat-
isfies the same equation asA. Therefore we can get the higher
order of deformation of structure constants in this way. Due
to the simplest solution of the constrain condition (10) thede-
formation of the same group can have several different forms,
e.g., the deformation group of IHOM, the semidirect product
of HOM and T(4), has two different families. Of course the
Poincaré group itself and ISIM group have only one family
of deformation.

4.1 The perturbative solution of the representation of the
deformed generators

The natural representation of the deformed generators can
be viewed as some kind of perturbation of the represen-
tation of original group which inherits from the Poincaré
group 5 dimensional natural matrix representation, for thede-
formed group can be viewed as the perturbation of the origi-
nal group. The generators of deformed group can be written
as{T ′i = Ti + τGi} and the corresponding structure constants
asC′ki j = Ck

i j + tAk
i j, where{Ti} andCk

i j are the generators and
structure constants of the original group, hence

Ck
i jTk =

[

Ti, T j

]

(14)

and
C′ki jT

′
k =
[

T ′i, T
′

j

]

, (15)

i.e.,

τ2
[

Gi,G j

]

+ τ
([

Gi, T j

]

+
[

Ti,G j

]

−Ck
i jGk − tAk

i jGk

)

− tAk
i jTk = 0, (16)

where the generatorsTs andGs are all 5× 5 matrices and the
matrix elements of the unknownGs are functions of the de-
formation parametert. Moreover all ofGs are zero matrices
whent = 0. We have nowN × 5× 5 = 25N unknown vari-
ables for a Lie algebra withN generators, e.g., there are 250

unknown variables for Poincaré group, 200 for ISIM group
and 175 for IHOM group respectively.

We can solve eq. (16) perturbatively. The dominant part
of perturbation parameterτ for generators andt for structure
constants should be in the same order. In general, we can
assume thattAk

i j = τĀ
k
i j. Eq. (16) becomes















[

Gi,G j

]

− Āk
i jGk = 0,

[

Gi, T j

]

+
[

Ti,G j

]

−Ck
i jGk − Āk

i jTk = 0.
(17)

The simplest case ist1Ak
i j = Āk

i j andt = t1τ. Rewritet1 as
t, and finally we have















[

Gi,G j

]

− tAk
i jGk = 0,

[

Gi, T j

]

+
[

Ti,G j

]

−Ck
i jGk − tAk

i jTk = 0.
(18)

There may be more than one set of solutions due to the
quadratic equations. We find that there may be more than one
inequivalent natural representations for the deformationof a
specific Lie algebra, which corresponds to different space-
time geometry.

4.2 The deformation of Poincaŕe group

The commutation relations for Poincaré group are

[

ri, r j

]

=
3
∑

k=1
εi jkrk,

[

bi, b j

]

= −
3
∑

k=1
εi jkrk,

[

bi, r j

]

=
3
∑

k=1
εi jkbk,

[

pi, p j

]

= 0,
[

ri, pt
]

= 0,
[

ri, p j

]

=
3
∑

k=1
εi jk pk,

[

bi, pt
]

= pi,
[

bi, p j

]

= δi j pt.

(19)

The first order Jacobi constrain equation,

Am
l[k Cl

i j] +Cm
l[k Al

i j] = 0,

the simplest solutionA • A = 0 as the second order constrain,
and the non-triviality condition,

Ak
i j , φ

k
l C

l
i j −Ck

l jφ
l
i −Ck

ilφ
l
j,

reduce most of the possible 10× 10×9
2 = 450 deformation

parametersAi
jk to zero and it can be verified that the defor-

mation group of Poincaré group is unique and possesses the
commutation structure,

[

ri, r j

]

=
3
∑

k=1
εi jkrk,

[

bi, b j

]

= −
3
∑

k=1
εi jkrk,

[

bi, r j

]

=
3
∑

k=1
εi jkbk,

[

ri, pt
]

= 0,

[

ri, p j

]

=
3
∑

k=1
εi jk pk,

[

bi, pt
]

= pi,
[

bi, p j

]

= δi j pt,

[

pt, pi
]

= tbi,
[

pi, p j

]

= −t
3
∑

k=1
εi jkrk,

(20)

which is known as Lie algebra of de Sitter group.
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The natural representation of the generators is also unique,
which has the form,

pt =































1

−t































, px =































1

t































,

py =































1

t































, pz =































1
t































,

(21)

where we only denote the non-zero matrix elements of the de-
formed generators, i.e., the representation matrix of the other
six generators, the generators of the Lorentz group, remain
unchanged.

4.3 The deformation of ISIM

The algebraic structure of ISIM, the semi-product of SIM
with T (4), is
[

t1, rz
]

= −t2,
[

t1, bz
]

= t1,
[

t1, pt
]

=
[

t1, pz
]

= px,
[

t2, rz
]

= t1,
[

t2, bz
]

= t2,
[

t2, pt
]

=
[

t2, pz
]

= py,
[

t1, px
]

= pt − pz,
[

t2, py

]

= pt − pz,
[

rz, px
]

= py,
[

rz, py

]

= −px,
[

bz, pt
]

= pz,
[

bz, pz
]

= pt.

(22)

The Jacobi constrain reduces the 8× 8×7
2 = 224 deformation

parameters of the deformed group DISIM to 57. The simplest
solutionA • A = 0 then is reduced further to 6 ones,

A1
1b, At

1x, Az
1x, At

rt, At
bt, Az

bt, (23)

wherer, b, t, x, z representrz, bz, pt, px, pz respectively.
The commutation relation for DISIM is

[

t1, rz
]

= −t2,
[

t1, bz
]

=
(

1+ A1
1b

)

t1,
[

t2, rz
]

= t1,
[

t1, pt
]

= px,
[

t1, px
]

=
(

1+ At
1x

)

pt −
(

1− Az
1x

)

pz,
[

t1, pz
]

=
(

1+ At
1x + Az

1x

)

px,
[

t2, bz
]

=
(

1+ A1
1b

)

t2,
[

t2, pt
]

= py,
[

t2, py

]

=
(

1+ At
1x

)

pt −
(

1− Az
1x

)

pz,
[

t2, pz
]

=
(

1+ At
1x + Az

1x

)

py,
[

rz, pt
]

= At
rt pt,

[

rz, px
]

= py + At
rt px,

[

rz, py

]

= −px + At
rt py,

[

rz, pz
]

= At
rt pz,

[

bz, px
]

=
(

At
1x + Az

1x + At
bt + Az

bt − A1
1b

)

px,
[

bz, py

]

=
(

At
1x + Az

1x + At
bt + Az

bt − A1
1b

)

py,
[

bz, pt
]

= pz + At
bt pt + Az

bt pz,
[

bz, pz
]

= pt +
(

2A1
1b − Az

bt

)

pt +
(

2At
1x + 2Az

1x + At
bt + 2Az

bt − 2A1
1b

)

pz.

(24)

The non-triviality condition is

At
rt

2
+
(

At
1x + Az

1x + At
bt + Az

bt − A1
1b

)2
, 0. (25)

The simplest solutionA • A = 0 gives


























Az
1x

(

At
1x + Az

1x

)

= 0,

Az
bt

(

At
1x + Az

1x

)

= 0,
(

At
1x − 2A1

1b

) (

At
1x + Az

1x

)

= 0.

(26)

The existence of deformation parameterA1
1b reveals that there

is deformation inside of the originalsim Lie subalgebra. We
thus can specify DISIM into two families.

4.3.1 The deformation group with SIM undeformed

If A1
1b = 0, SIM is undeformed in DISIM from eq. (24), the

non-triviality condition now reads

At
rt

2
+
(

At
1x + Az

1x + At
bt + Az

bt

)2
, 0. (27)

The quadratic constrain condition becomes






























Az
1x

(

At
1x + Az

1x

)

= 0,

Az
bt

(

At
1x + Az

1x

)

= 0,

At
1x

(

At
1x + Az

1x

)

= 0.

(28)

From eq. (28), the deformation group with SIM unde-
formed can be classified into two subfamilies: 1,Az

1x = −At
1x,

and 2,Az
1x = Az

bt = At
1x = 0.

In the first subfamily,At
1x can be absorbed into the redefi-

nition of the generators,


















ti →
(

1+ At
1x

)−1/2
ti, i = 1, 2,

pα →
(

1+ At
1x

)1/2
pα, α = t, z.

(29)

There are three deformation parameters left,At
rt, At

bt, Az
bt,

which can be simplified further. In fact, anyAt
bt gives the

same Lie algebra up to an isomorphism whenAt
bt + Az

bt is
kept fixed. For example, there are two Lie algebras,t(i)1 , t(i)2 ,
r(i)

z , b(i)
z , p(i)

t , p(i)
x , p(i)

y , p(i)
z wherei = 1 corresponds to one

set of deformation parametersAt
rt, At

bt, Az
bt andi = 2 corre-

sponds to the other set of deformation parametersAt
rt, Bt

bt, Bz
bt

satisfyingAt
bt + Az

bt = Bt
bt + Bz

bt. We then can define














p(2)
t = p(1)

t +
1
2

(

At
bt − Bt

bt

) (

p(1)
t − p(1)

z

)

,

p(2)
z = p(1)

z +
1
2

(

At
bt − Bt

bt

) (

p(1)
t − p(1)

z

)

,
(30)

such thatp(2)
t − p(2)

z = p(1)
t − p(1)

z and

[

bz, p
(2)
t

]

=
[

bz, p
(1)
t

]

+
At

bt − Bt
bt

2

[

bz, p
(1)
t − p(1)

z

]

= p(1)
z + At

bt p
(1)
t + Az

bt p
(1)
z

+
At

bt − Bt
bt

2

(

−1+ At
bt + Az

bt

) (

p(1)
t − p(1)

z

)

= p(1)
z −

At
bt − Bt

bt

2

(

p(1)
t − p(1)

z

)

+ At
bt p

(2)
t + Az

bt p
(2)
z

= p(2)
z −
(

At
bt − Bt

bt

) (

p(2)
t − p(2)

z

)

+ At
bt p

(2)
t + Az

bt p
(2)
z

= p(2)
z + Bt

bt p
(2)
t +
(

At
bt + Az

bt − Bt
bt

)

p(2)
z . (31)
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We therefore only consider two cases in whichAt
bt = 0 or

Az
bt = 0.
In the second subfamily, there are two deformation param-

etersAt
rt and At

bt, and therefore it can be classified into the
first subfamily.

There remain two cases to be investigated,At
bt = 0 for the

first case andAz
bt = 0 for the second case.

Let’s consider the first case in whichAt
bt = 0. Denoting

A1 = At
rt and A2 = At

bt, the representation matrices of the
deformed generators are

rz =































A1
A1 −1
1 A1

A1
0































, bz =































A2 1
A2

A2
1 A2

0































, (32)

and the corresponding single parameter group elements are

Rz (θ) =



































eθA1

eθA1 cosθ −eθA1 sinθ
eθA1 sinθ eθA1 cosθ

eθA1

1



































,

Bz (θ) =



































eθA2 coshθ eθA2 sinhθ
eθA2

eθA2

eθA2 sinhθ eθA2 coshθ
1



































,

(33)

where the deformed rotationRz (θ) is not a merely rota-
tion anymore but a rotation followed by a dilatation eθA1.
Rz (2π) = e2πA1 is a pure dilatation whenA1 , 0. To keep
Rz (θ) as a reasonable local rotation operation, one demands
A1 = 0. There survives only one deformation parameterA2,
denoted byb hereafter, for this case. The representation ma-
trix of the deformed boost operation is now of the form,

Bz (θ) = ebθ























coshθ sinhθ
1

1
sinhθ coshθ























, (34)

an ordinary boost followed by a dilatation.
In the second case,Az

bt = 0. DenotingA1 = At
rt and

A2 = Az
bt, what is different from the first case just investigated

is that there may be a group of matrix representation for the
deformed group which is specified by a free parameterλ:

rz =































A1
A1 −1
1 A1

A1
0































,

bz =































2λ 1− A2 + 2λ
A2

A2
1+ A2 − 2λ 2(A2 − λ)

0































,

pt =































0 1+ λ
0

0
0 −λ

0































, pz =































0 λ
0

0
0 1− λ

0































.

(35)

Similar to the first case, one can arrive at a reasonable lo-
cal rotation operation by forcing the rotation generator unde-
formed. The free parameterλ actually represents the choice
of coordinate system. This means that the representation ma-
trices which differentλ corresponds to can be transformed
from one to another by a coordinate transformation, e.g., the
matrix representation ofλ = λ1 can be transformed into ones
of λ = λ2 by the following coordinate transformation matrix,

T =































1− λ1 + λ2 λ2 − λ2
1

1
λ1 − λ2 1+ λ1 − λ2

1































. (36)

What we need is therefore to choose an appropriateλ, e.g.,
λ =

A2
2 , and the representation matrices for generators are

bz =































A2 1
A2

A2
1 A2

0































, pt =



































0 1+ A2
2

0
0

0 − A2
2

0



































,

pt =



































0 A2
2

0
0

0 1− A2
2

0



































.

(37)

The corresponding single parameter group elements are

Bz (θ) = ebθ























coshθ sinhθ
1

1
sinhθ coshθ























,

Pt (λ) =



























λ +
A2
2 λ

− A2
2 λ



























, Pz (λ) =



























A2
2 λ

λ − A2
2 λ



























.

(38)

Note that there are many different matrix representations as
a matter of fact. However, the 5× 5 representation matrices
of the deformed group elements have their origin from the
5 × 5 representation of Poincaré group which has a special
geometric explanation. The 5× 5 representation of the de-
formed group should have the same geometric explanation,
i.e., the upper left 4× 4 part of the representation matrix rep-
resents rotation and boost, the upper right 1× 4 part repre-
sents translation and the lower 5× 1 part should be kept zero.
The following matrix representation of the first subclass is
excluded with this restriction,

rz =































0
0 −1
1 0

0
−A1































, bz =































0 1
0

0
1 0

−A2































, (39)

which do not have an apparent geometric explanation. We
will ignore such a kind of representation hereafter.
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4.3.2 The deformation group with SIM deformed

In the last section we have investigated the deformation group
in which the SIM part remains un-deformed and the corre-
sponding natural representation. We are going to investigate
the deformation of ISIM in which the SIM itself also deforms
and the corresponding natural representation in this section.
Like the case where SIM is undeformed, we can specify two

subfamilies, 1. Az
1x = −At

1x and 2. Az
1x = Az

bt = 0 and
At

1x = 2A1
1b.

The first subfamily is denoted byxdisim1, in which there
are 4 deform parameters,A1

1b, At
rt, At

bt, Az
bt, where the de-

formed Lie algebra with an arbitrary value ofAt
bt is the same

one up to an isomorphism only ifAt
bt + Az

bt is kept fixed.
There are three independent deform parameters,A1

1b, At
rt and

At
bt + Az

bt actually.

We can also specify two cases further as in the last section. In the first case , the independent deform parameters areA1
1b, At

rt

andAt
bt, and the commutation relations are

[

t1, bz
]

=
(

1+ A1
1b

)

t1,
[

t2, bz
]

=
(

1+ A1
1b

)

t2,
[

rz, pt
]

= At
rt pt,

[

rz, px
]

= py + At
rt px,

[

rz, py

]

= −px + At
rt py,

[

rz, pz
]

= At
rt pz,

[

bz, pt
]

= pz + At
bt pt,

[

bz, px
]

=
(

At
bt − A1

1b

)

px,
[

bz, py

]

=
(

At
bt − A1

1b

)

py,
[

bz, pz
]

= pt + 2A1
1b pt +

(

At
bt − 2A1

1b

)

pz.

(40)
The natural matrix representation are

bz =























α − 2A1 + A3 1+ α
A3 − A1

A3 − A1
1− α + 2A1 A3 − α























, rz =























A2
A2 −1
1 A2

A2























,

pt =























1+ α2

A1 − α2























, px =























1+ A1























, py =























1+ A1























, pz =























α
2 − A1

1+ 2A1 − α2























,

(41)

whereα is a free parameter such that the matrix representations of different values can be transformed from one to another. The
transformation matrix

T =



































1+ α2−α1
2+2A1

α2−α1
2+2A1

1
1

− α2−α1
2+2A1

1− α2−α1
2+2A1

1



































(42)

can transform the matrix representation ofα = α1 to one ofα = α2. We giveα a suitable value, e.g.,α = A1 and therefore

bz =























A3 − A1 1+ A1
A3 − A1

A3 − A1
1+ A1 A3 − A1























, rz =























A2
A2 −1
1 A2

A2























,

pt =



























1+ A1
2

A1
2



























, px =























1+ A1























, py =























1+ A1























, pz =



























− A1
2

1+ 3A1
2



























.

(43)

The corresponding single parameter group elements are

Bz (θ) = eθ(A3−A1)























cosh(1+ A1) θ sinh(1+ A1) θ
1

1
sinh(1+ A1) θ cosh(1+ A1) θ























, Pt (λ) =



























λ +
A1
2 λ

A1
2 λ



























, Pz (λ) =



























− A1
2 λ

λ +
3A1
2 λ



























. (44)

In the second case of xdisim1, the deform parameters areA1
1b, At

rt, Az
bt and the commutation relations are

[

t1, bz
]

=
(

1+ A1
1b

)

t1,
[

t2, bz
]

=
(

1+ A1
1b

)

t2,
[

rz, pt
]

= At
rt pt,

[

rz, px
]

= py + At
rt px,

[

rz, py

]

= −px + At
rt py,

[

rz, pz
]

= At
rt pz,

[

bz, pt
]

= pz + Az
bt pz,

[

bz, px
]

=
(

Az
bt − A1

1b

)

px,
[

bz, py

]

=
(

Az
bt − A1

1b

)

py,
[

bz, pz
]

= pt +
(

2A1
1b − Az

bt

)

pt + 2
(

Az
bt − A1

1b

)

pz.

(45)

There are many equivalent representations and we can choosea simple one as in the first case,

rz =































A2
A2 −1
1 A2

A2
0































, bz =































0 1− A3 + 2A1
A3 − A1

A3 − A1
1+ A3 2(A3 − A1)

0































, (46)
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whereAi representsA1
1b, At

rt, Az
bt. For the same reason as in the last section, it is required that a local rotation operation should

not have an additional dilatation transformation constrainsA2 = 0. Hence the deformed group element is

Bz (θ) = eθ(A3−A1)





































coshω + A1−A3
1+A1

sinhω 1+2A1−A3
1+A1

sinhω
1

1
1+A3
1+A1

sinhω coshω − A1−A3
1+A1

sinhω





































, (47)

whereω = (1+ A1) θ. Note that the boost operation does not have an additional accompanied dilatation operation when
A3 = A1.

The second subfamily is denoted by xdisim2, in which there remain three deform parameters,A1
1b, At

rt, At
bt, for Az

1x = Az
bt =

0, At
1x = 2A1

1b, and the commutation relations become

[

t1, bz
]

=
(

1+ A1
1b

)

t1,
[

t2, bz
]

=
(

1+ A1
1b

)

t2,
[

t1, px
]

=
(

1+ 2A1
1b

)

pt − pz,
[

t1, pz
]

=
(

1+ 2A1
1b

)

px,
[

t2, py

]

=
(

1+ 2A1
1b

)

pt − pz,
[

t2, pz
]

=
(

1+ 2A1
1b

)

py,
[

rz, pt
]

= At
rt pt,

[

rz, px
]

= py + At
rt px,

[

rz, py

]

= −px + At
rt py,

[

rz, pz
]

= At
rt pz,

[

bz, pt
]

= pz + At
bt pt,

[

bz, px
]

=
(

A1
1b + At

bt

)

px,
[

bz, py

]

=
(

A1
1b + At

bt

)

py,
[

bz, pz
]

=
(

1+ 2A1
1b

)

pt +
(

2A1
1b + At

bt

)

pz.

(48)

There are many equivalent natural representations of this deformed group, one of which is as follows,

rz =































A2
A2 −1
1 A2

A2
0































, bz =































2A1 + A3 1+ 2A1
A1 + A3

A1 + A3
1 A3

0































, pz =































0 2A1
0

0
0 1

0































. (49)

The deform parameter in the rotation generator is supposed to be zero for the same reason that we need a resonable local rotation
operation. Now we arrive at the natural representation of the deformed single parameter group element,

Bz (θ) = e(A1+A3)θ





























coshω + A1
1+A1

sinhω 1+2A1
1+A1

sinhω
1

1
1

1+A1
sinhω coshω − A1

1+A1
sinhω





























, Pz (λ) =























2A1λ

λ























, (50)

whereω = (1+ A1) θ. Note that the boost operation does not have the additional accompanied dilatation whenA3 = −A1 similar
to in the previous cases.

4.4 The deformation of IHOM

The Lie algebra of semi-direct product of HOM with T(4) has
the following commutation relations,
[

t1, bz
]

= t1,
[

t1, pt
]

=
[

t1, pz
]

= px,
[

t1, px
]

= pt − pz,
[

t2, bz
]

= t2,
[

t2, pt
]

=
[

t2, pz
]

= py,
[

t2, py

]

= pt − pz,
[

bz, pt
]

= pz,
[

bz, pz
]

= pt.

The deform group DIHOM of IHOM which keeps HOM un-
deformed has four deform parameters which satisfy three sec-
ond order constrain conditions

A1
1yAb

bt = A1
1yAz

bt = Ab
2t

(

At
bt + Az

bt

)

= 0,

and the non-triviality condition

(

A1
1y + Ab

2t

)2
+
(

At
bt + Az

bt

)2
, 0.

It can be classified into two families. One is denoted by
dihom1 with A1

1y = Ab
2t = 0 and has two deform parame-

tersAt
bt, Az

bt, the other is denoted by dihom2 withAz
bt = −At

bt
and has two deform parametersA1

1y, Ab
2t.

The commutation relations for dihom1 is
[

bz, pt
]

= pz + At
bt pt + Az

bt pz,
[

bz, pz
]

= pt +
(

At
bt + 2Az

bt

)

pz − Az
bt pt,

[

bz, px
]

=
(

At
bt + Az

bt

)

px,
[

bz, py

]

=
(

At
bt + Az

bt

)

py.

(51)

Note that any value ofAt
bt whenAt

bt + Az
bt is kept fixed gives

the same deformed Lie algebra just as what happens in de-
formed sim lie algebra. We therefore takeAz

bt = 0. Note also
that the commutation relation of dihom1 is almost the same as
one of the deformed isim algebra with sim part invariant. The
difference is that dihom1 has one less generators than disim.
The deformed part of the natural representation of dihom1 is

bz =































A1 1
A1

A1
1 A1

0































, (52)
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which is apparently the same as in disim1. TakingAt
bt = 0 is

another choice and the natural representation of deformation
part is

bz =































0 1− A1
A1

A1
1+ A1 2A1

0































, (53)

which is the same as in disim2.
There is another deformation group DIHOM2 of IHOM,

which is not isomorphic to DIHOM1 and its deformed part

has the following commutation relations,

[

t2, px
]

=
(

A1
1y + Ab

2t

)

t1,
[

t2, pt
]

= py + Ab
2tbz,

[

t2, py

]

= pt − pz +
(

2A1
1y + Ab

2t

)

t2,
[

t2, pz
]

= py + Ab
2tbz,

[

t1, py

]

= A1
1yt1,

[

py, pt

]

=
(

A1
1y + Ab

2t

)

pt + A1
1y pz,

[

py, px

]

=
(

A1
1y + Ab

2t

)

px,
[

py, pz

]

=
(

A1
1y + Ab

2t

)

pz + A1
1y pt.

(54)
The natural matrix representation therefore can be solved as:

t2 =































1

1 1
−1

−δ −δ































, bz =































γ 1
γ
γ

1 γ
γ































, pt =































1

−δ































,

px =































1
δ































, py =































−γA2 A1
−γA2

δ − γA2 1
A1 −γA2

−δ − γA2































, pz =































δ
1































,

(55)

whereγ is an arbitrary parameter andδ = A1 + A2. Here we only list the matrices for deformed generators. Note that
regardless of the value ofγ, the (5, 5) element of eitherbz or py is nonzero. Moreover, the 5th row oft2 is non-zero. So the
matrix representation of dihim2 is different from the ones of various deformed Lie algebra. The corresponding representation
spacetime is apparently curved globally. Note also that therepresentation with differentγ is inequivalent in general. Takeγ = 0,
and we have

t2 =































1

1 1
−1

−δ −δ































, py =































A1

δ 1
A1

−δ































, pt =































1

−δ































, px =































1
δ































, pz =































δ
1































. (56)

The representation of dihom2 is totally different from one of dihom1.

4.5 The deformed group of TE(2)

Just like HOM group, the E(2) group is also the subgroup of
Lorentz group with three generators. The corresponding Lie
algebra is e(2). The semiproduct of E(2) and T(4) is denoted
by TE, and its Lie algebra is denoted by te with the commu-
tation relations,

[

t1, rz
]

= −t2,
[

t1, pt
]

=
[

t1, pz
]

= px,
[

t1, px
]

= pt − pz,
[

t2, rz
]

= t1,
[

t2, pt
]

=
[

t2, pz
]

= py,
[

t2, py

]

= pt − pz,
[

rz, px
]

= py,
[

rz, py

]

= −px.

(57)

The deformed TE is DTE with 5 deform parameters
A1

1t, At
rt, Az

rt, A1
tx, Ax

tx under the second order constrain con-
ditions,











A1
1t

(

At
rt + Az

rt
)

= 0, A1
tx
(

At
rt + Az

rt
)

= 0,

Ax
tx
(

At
rt + Az

rt
)

= 0, A1
1tA

x
tx = 0.

(58)

The non-triviality condition is

(

At
rt + Az

rt
)2
+
(

At
rt + 2Az

rt
)2
+
(

A1
tx

)2
+
(

A1
1t − Ax

tx

)2
, 0. (59)

The DTE therefore can be divided into several families simi-
lar to what happens in DISIM and DIHOM.

1. At
rt + Az

rt , 0, A1
1t = A1

tx = Ax
tx = 0, the corresponding

deformed Lie algebra is denoted by dte1 with the following
commutation relations,

[

rz, pt
]

= At
rt pt + Az

rt pz,
[

rz, px
]

= py +
(

At
rt + Az

rt
)

px,
[

rz, py

]

= −px +
(

At
rt + Az

rt
)

py,
[

rz, pz
]

= Az
rt pt +

(

At
rt + 2Az

rt
)

pz.

(60)

The non-triviality condition is now

(

At
rt + Az

rt
)2
+
(

At
rt + 2Az

rt
)2
+
(

At
rt
)2
+
(

Az
rt
)2
, 0. (61)

The matrix representation is

rz =































A1 −A2
A1 + A2 −1

1 A1 + A2
A2 A1 + 2A2

0































, (62)
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whereA1 = At
rt andA2 = Az

rt, while the corresponding group
element as:

Rz (θ) = e(A1+A2)θ























1− A2θ −A2θ
cosθ − sinθ
sinθ cosθ

A2θ 1+ A2θ























. (63)

It is apparent that the rotation operation changes a lot and may

have additional accompanied dilatation as in disim. More-
over, the rotation itself is not only a rotation in thexy plane
but also rotation in the rotatedtz plane.

2. At
rt + Az

rt = 0, A1
1t = 0, the corresponding Lie alge-

bra is denoted by dte2. There are three deform parameters
At

rt, A1
tx, Ax

tx and the commutation relations are

[

rz, pt
]

= At
rt (pt − pz) ,

[

rz, pz
]

= At
rt (pt − pz) ,

[

pt, px
]

= A1
txt1 + Ax

tx px,
[

pt, py

]

= A1
txt2 + Ax

tx py,
[

pt, pz
]

= Ax
tx (pz − pt) ,

[

pz, px
]

= A1
txt1 + Ax

tx px,
[

pz, py

]

= A1
txt2 + Ax

tx py,
(64)

which can be simplified further by a linear transformation inLie algebra

T =















































1
1

1 λ −λ
1

1
1

1















































. (65)

The new set of generators afterT transformation differs from the old only withrz replaced byr′z = rz + λ (pt − pz). Then the
new commutation relations are

[

t1, r′z
]

=
[

t1, rz
]

+ λ
([

t1, pt
]

−
[

t1, pz
])

=
[

t1, rz
]

− λ (px − px) =
[

t1, rz
]

,
[

t2, r′z
]

=
[

t2, rz
]

+ λ
([

t2, pt
]

−
[

t2, pz
])

=
[

t2, rz
]

− λ
(

py − py

)

=
[

t2, rz
]

,
[

r′z, pt

]

=
[

rz, pt
]

+ λ
[

pt, pz
]

= At
rt (pt − pz) + λAx

tx (pz − pt) =
(

At
rt − λAx

tx
)

(pt − pz) ,
[

r′z, pz

]

=
[

rz, pz
]

+ λ
[

pt, pz
]

= At
rt (pt − pz) + λAx

tx (pz − pt) =
(

At
rt − λAx

tx
)

(pt − pz) ,
[

r′z, px

]

=
[

rz, px
]

+ λ
([

pt, px
]

−
[

pz, px
])

= 0,
[

r′z, py

]

=
[

rz, py

]

+ λ
([

pt, py

]

−
[

pz, py

])

= 0,

(66)

i.e., the commutation relations are almost kept unchanged ex-
cept [r′z, pt] and [r′z, pt]. Define A′trt = At

rt − λAx
tx, the new

commutation relations are














[

r′z, pt

]

= A′trt (pt − pz) =
(

At
rt − λAx

tx
)

(pt − pz) ,
[

r′z, pz

]

= A′trt (pt − pz) =
(

At
rt − λAx

tx
)

(pt − pz) .
(67)

HenceAt
tx andAx

tx are not independent parameters. We can
specify two subfamilies of deformation group DTE2 further.
One subfamily is denoted by dte2a in whichA1

tx, Ax
tx are taken

as the independent parameters. The deformed commutation

relations are

[

pt, px
]

= A1
txt1 + Ax

tx px,
[

pt, py

]

= A1
txt2 + Ax

tx py,
[

pt, pz
]

= Ax
tx (pz − pt) ,

[

pz, px
]

= A1
txt1 + Ax

tx px,
[

pz, py

]

= A1
txt2 + Ax

tx py.

(68)

In the perturbation expansion of its matrix representation, the
first order of someĀk

i j in eq. (17) does not give contribution

but their second order does, i.e.,A1
tx = ατ

2, Ax
tx = βτ. There

are two inequivalent representations for this subfamily. One
is

pt =































α + 2β α 1
β
β

−α − A2 2β − α − A2
0































, px =































−β
β − A2 β − A2 1

β
0































,

pz =































α + A2 α − 2β + A2
β
β

2β − α − 2A2 4β − α − 2A2 1
0































, py =































−β

β − A2 β − A2 1
β

0































,

(69)
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whereA1 = A1
tx, A2 = Ax

tx, α is a free parameter andβ satisfiesβ2 − A2β + A1 = 0. It can be simplified by settingα = − A2
2 ,

pt =



































2β − A2
2 − A2

2 1
β
β

− A2
2 2β − A2

2
0



































, px =































−β
β − A2 β − A2 1

β
0































,

pz =



































A2
2

A2
2 − 2β

β
β

2β − 3A2
2 4β − 3A2

2 1
0



































, py =































−β

β − A2 β − A2 1
β

0































.

(70)

The other kind of representation is

pt =































γ γ − A2 1
λ
λ

2λ − γ − A2 2λ − γ
0































, px =































λ − A2
λ − A2 λ − A2 1

A2 − λ
0































,

py =































λ − A2

λ − A2 λ − A2 1
A2 − λ

0































, pz =































γ γ − A2
λ
λ

2λ − γ − A2 2λ − γ
0































,

(71)

whereγ is a free parameter andλ satisfiesλ2 − A2λ + A1 = 0. Settingγ = λ, it is simplified as:

pt =































λ λ − A2 1
λ
λ

λ − A2 λ
0































, px =































λ − A2
λ − A2 λ − A2 1

A2 − λ
0































,

py =































λ − A2

λ − A2 λ − A2 1
A2 − λ

0































, pz =































λ λ − A2
λ
λ

λ − A2 λ
0































.

(72)

It is apparent that the translation operations are entangled with t1 andt2 operations together in both representations.
The other subfamily is denoted by dte2b in whichA1

tx andAt
rt are taken as independent deform parameters. Its commutation

relation is
[

rz, pt
]

= At
rt (pt − pz) ,

[

rz, pz
]

= At
rt (pt − pz) ,

[

pt, px
]

= A1
txt1,

[

pt, py

]

= A1
txt2,

[

pz, px
]

= A1
txt1,

[

pz, py

]

= A1
txt2.

(73)

dte2b does not have a natural representation which is a continuous deformation from the representation of Poincaré group.
Moreover we can observe that the deformation group is more likely an isometry group of curved spacetime and the rotation
operation does not seem compact anymore. We can ignore this kind of deformation group of E(2).

3. At
rt + Az

rt = 0, Ax
tx = 0 and the corresponding Lie algebra is denoted by dte3 with three deform parameters,A1

1t, At
rt and

A1
tx. The commutation relations are

[

t1, pt
]

= px + A1
1tt1,

[

t1, pz
]

= px + A1
1tt1,

[

rz, pt
]

=
[

rz, pz
]

= At
rt (pt − pz) ,

[

rz, px
]

= py − A1
1tt2,

[

rz, py

]

= −px − A1
1tt1,

[

pt, pz
]

= A1
1t (pt − pz) ,

[

pt, px
]

=
[

pz, px
]

= A1
txt1,

[

pt, py

]

=
[

pz, py

]

= A1
txt2 − A1

1t py.
(74)

As in the case of dte2, dte3 can be specified into two subfamilies, for there is only one independent parameter fromAt
rt andA1

1t
via the linear combination between generators whenA1

1t , 0.
The first subfamily is denoted by det3a, in which we takeA1

1t, A1
tx as deform parameters and the deformed commutation

relations are
[

t1, pt
]

= px + A1
1tt1,

[

t1, pz
]

= px + A1
1tt1,

[

rz, px
]

= py − A1
1tt2,

[

rz, py

]

= −px − A1
1tt1,

[

pt, px
]

=
[

pz, px
]

= A1
txt1,

[

pt, pz
]

= A1
1t (pt − pz) ,

[

pt, py

]

=
[

pz, py

]

= A1
txt2 − A1

1t py.
(75)
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Like what is encountered in dte2, the first order of someĀk
i j in eq. (17) does not give contribution but their second orderdoes to

the perturbation expansion of its matrix representation. There are two inequivalent representations for this kind. The first one is

pt =































2α + β β 1
α
α

A1 − β A1 + 2α − β
0































, px =































−A1 − α
α α 1

A1 + α
0
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



























,

py =































−α

A1 + α A1 + α 1
α
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
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
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



,

(76)

whereβ is a free parameter andα satisfiesA2 + α (A1 + α) = 0. By takingβ = A1
2 , it is simplified to

pt =






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
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(77)

The second representation is
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(78)

whereλ is a free parameter andγ satisfiesA2 + γ (A1 + γ) = 0. By takingλ = γ, it is simplified to
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(79)
It is apparent again as in the DTE2a that the translation operations are entangled witht1 and t2 operations together in both
representations.

The second subfamily is denoted by dte3b, in which we takeAt
rt, A1

tx as deform parameters and the deformed commutation
relations are

[

rz, pt
]

=
[

rz, pz
]

= At
rt (pt − pz) ,

[

pt, px
]

=
[

pz, px
]

= A1
txt1,

[

pt, py

]

=
[

pz, py

]

= A1
txt2. (80)

the corresponding deformed matrix representation is
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


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
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
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(81)
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where the single parameter group element representation cor-
responding torz is

Rz (θ) =























1+ A2θ A2θ
cosθ − sinθ
sinθ cosθ

−A2θ 1− A2θ























, (82)

a reasonable rotation operation not only in thexy plane but
also in the rotatedtz plane as in DTE1. The translation oper-
ations are entangled witht1 andt2 operations together again.

The common features of DTE are that the rotation opera-
tion is not only in thexy plane but also in the rotatedtz plane
and the translation operations are entangled witht1 andt2 op-
erations together.

4.6 The deformation group of ISO(3)

SO(3) group has three generatorsrx, ry, rz. The deforma-
tion of its semi-direct product withT (4) has two deform pa-
rametersAx

tx, A3
xy, where 3 representsrz. The second order

constrain condition is

Ax
txA3

xy = 0. (83)

The deformation group DISO(3) therefore is specified into
two classes. The first class is denoted by diso(3)1, in which
the deform parameter is taken asA1 = A3

xy and the commuta-
tion relations are
[

px, py

]

= A1rz,
[

pz, px
]

= A1ry,
[

py, pz

]

= A1rx. (84)

The natural matrix representation is
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
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(85)

whereα andβ satisfyαβ+A1 = 0. Hence there are two ways
to get simplification.

By the first way, by takingβ = α if A1 < 0, we have
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whereα2 = −A1.

By the second way, by takingβ = −α if A1 > 0, we have
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(87)

whereα2 = A1.
The second family of deformation, denoted by diso(3)2,

consists of deformation with deform parametersA1 = Ax
tx.

The deformed commutation relations are
[

pt, pi
]

= Ax
tx pi, i = x, y, z. (88)

There are three kinds of representation therefore. The de-
formed representation matrices are

1.
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2.
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
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3.
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whereα is a free parameter and can be taken asA1 in all of
the three cases.

4.7 The deformation of ISO(2, 1)

Let us investigate the deformation of semi-product of three
generators Lorentz subgroup SO(2, 1) with T(4), DISO(2, 1),
at last. The three generators of SO(2, 1) arerx, by andbz.
DISO(2, 1) has two deform parametersAt

tx andA2
ty, where 2

representsby, and a second order constrain condition,

At
txA2

ty = 0. (92)
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Thus DISO(2, 1)1 is specified into two families.

The first family is denoted by diso(2, 1), in which the de-
form parameter is taken asA1 = A2

ty and the deformed com-
mutation relations are

[

pt, py

]

= A1by,
[

pt, pz
]

= A1bz,
[

py, pz

]

= −A1rx, (93)

as well as the representation is
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whereα andβ satisfyαβ + A1 = 0. Thus it can be simplified
according to the value ofA1.

WhenA1 > 0, we can takeβ = −α and get
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whereα = ±
√

A1.

WhenA1 < 0, we can takeβ = α and get

px =































α
α 1
α
α

0































, pt =































α 1
α

0
0

0































,

py =































0
−α
α 1

0
0































, pz =































0
−α

0
α 1

0































,

(96)

whereα = ±
√
−A1.

The second family is denoted by diso(2, 1)2, in which the
deform parameter is taken asA1 = At

tx and the deformed com-
mutation relations are

[

px, pi
]

= −A1pi, i = t, y, z, (97)

as well as the representation is
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whereα andβ satisfyα(α − β) = 0. Thus it can be simplified
in two ways.

By the first way,α = 0 and hence only the representation
of px is deformed,
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Second, we takeα = β = A1, the representation is simplified
as:
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4.8 Summary, conclusion and outlook

Now we investigate the deformation the semi-product of all
of three and four generators Lorentz subgroups with T(4) and
obtain their natural representations. We list the deformation
classification and the brief remark on their characters and
their natural representations in Table 1.

In summary, the deformation of Poincaré group itself is the
de Sitter group which is the isometry of maximal symmetric
space of four dimensional spacetime, i.e., the isometry group
of a curved de Sitter spacetime.

The deformation of ISIM can be classified into two fam-
ilies. One family is DISIM, in which SIM part is unde-
formed. There are many equivalent deformations which are
connected with each other by redefinition of generators. For
some cases there are a family of equivalent natural represen-
tations. The rotation and boost operation obtain additional ac-
companied scale transformation in all cases. The other fam-
ily, in which the SIM part is deformed, can be divided into
two subfamilies. The first subfamily is XDISIM1. Similar
to family DISIM, there are also many equivalent deforma-
tions which are connected with each other by redefinition of
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Table 1 The deformation of semi-product Poincaré subgroups

Subgroup
Deformation Deformation Natural

Remarkfamily subfamily rep.

Poincaré de Sitter de Sitter 1 the isometry group of maximalsymmetric space of 4-spacetime

ISIM

DISIM
DISIM 1

much equivalent deformation corresponding to generators redefinition

(SIM undeformed) additional accompanied dilatation for rotation and boost operation

XDISIM1
XDISIM1 1

much equivalent deformation corresponding to generators redefinition

(SIM deformed) additional accompanied dilatation for rotation and boost operation

XDISIM2
XDISIM2 1

additional accompanied dilatation for rotation operation

(SIM deformed) additional accompanied dilatation for boost operation

IHOM

DIHOM1 DIHOM1

1

much equivalent representations corresponding to generators redefinition

(WDISIM ) (WDISIM ) additional accompanied dilatation for boost operation

same structure as the corresponding part of DISIM

DIHOM2 DIHOM2
1

no natural representations inherited from Poincaré group

(DIHOM) (DIHOM) additional accompanied dilatation for boost operation

TE(2)

DTE1 DTE1 1
additional accompanied dilatation for rotation operation

rotation operation not only inxy plane but also in rotatedtz plane

DTE2
DTE2a 2 translations are entangled witht1 andt2 operations

DTE2b 0 no natural representation inherited from Poincarégroup

DTE3

DTE3a 2 translations are entangled witht1 andt2 operations

DTE3b 1
translations are entangled witht1 andt2 operations

rotation operation not only inxy plane but also in rotatedtz plane

ISO(3)

DISO(3)1 DISO(3)1 1
inequivalent representation corresponding to different signs of deform parameter

only translations operations deformed

DISO(3)2 DISO(3)2 3
three inequivalent representations

only translations operations deformed

ISO(2, 1)

DISO(2, 1)1 DISO(2, 1)1 1
inequivalent representation corresponding to different signs of deform parameter

only translations operations deformed

DISO(2, 1)2 DISO(2, 1)2 2
two inequivalent representations

only translations operations deformed

generators. There are also a family of equivalent natural rep-
resentations. Both deformedRz and deformedBZ obtain ad-
ditional accompanied scale transformation. The second sub-
family XDISIM1 also has a family of equivalent natural rep-
resentations and both deformedRz and deformedBZ obtain
additional accompanied scale transformation. The deformed
rotation operation can be a meaningful rotation only if the ad-
ditional accompanied scale factor is one, i.e, the correspond-
ing deform parameter vanishes.

The deformation of IHOM with HOM part undeformed
is classified into two families. The first family is DIHOM1
which is the same deformed group XDISIM1 short of one
generatorrz. The natural representation is the same as
XDISIM1. The other family DIHOM2 is totally different
from DIHOM1. The 5− d representation of DIHOM2 re-
veals that it is not the natural representation inherited from
Poincaré group. The DIHOM2 should be the symmetry group
of a curved spacetime similar to de Sitter group.

The deformation of TE with E(2) part undeformed can be
classified into three families. In the first family DTE1, de-
formed rotationRz is not only a rotation in thexy plane but
also a rotation in the rotatedtz plane and obtains additional
accompanied scale transformation. The second family DTE2
is further divided into two subfamilies. For the first subfamily
DTE2a, there are two inequivalent natural representationsin
which only the translation operators are deformed and the de-
formed translation operators are translation entangled with t1
andt2. The second subfamily DTE2b does not have a natural
representation. Like DTE2, the third family DTE3 has two
subfamilies. Just like DTE2a, the first one DTE3a has two
inequivalent natural representations in which only the trans-
lation operators are deformed and the deformed translation
operators are translation entangled witht1 andt2. In the sec-
ond subfamily DTE3b, the deformed translation operators are
translation entangled witht1 andt2 and the deformed rotation
Rz is not only a rotation in thexy plane but also a rotation
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in the rotatedtz plane without additional accompanied scale
transformation.

The deformation of ISO(3) with SO(3) part undeformed
can be classified into two families. In the first family
DISO(3)1, there are two inequivalent natural representations
which correspond to the sign of the deform parameter and
only the translation operators deform. In the second fam-
ily DISO(3)2, there are three inequivalent natural representa-
tions in which still only the translation operators deform.

Very similar to the case of ISO(3), the deformation of
ISO(2, 1) with SO(2, 1) part undeformed can be classified
into two families. The first family DISO(2, 1)1 is similar to
the case of DISO(3)1 while the difference is that DISO(2, 1)2
has two inequivalent natural representations.

With these detailed representations and deformed as well
as undeformed operators’ formalism, one can search the ge-
ometry whose metric function is invariant under the action
of the specified semi-product POincaré subgroup and its de-
formed partner and then construct the field theory in space-
time related to the invariant metric function. This procedure
will build up the field theory realization of Cohen-Glashow’s
proposal of VSR. In our subsequent work we will present the
search for invariant metric function and the construction of
field theory.

XUE Xun wish to thank ZHENG HanQing for illuminating discussions.
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