Chapter 1

Special Relativity

The Lorentz transformation is a linear transformation between observers,
with,
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Using the chain rule, we find,
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The pratial derivatives therefore transform inverse to the coordinates, and
therefore represent a dual coefficient vector. Hence we can write, with lower
indices,
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For the invariant vector, we write,
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The partial derivative has to be written to the right of the category vector
symbol, as, in curved space-time, it might vary with the coordinates.
The propagation of light is given by Maxwell’s equation.
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The wave equation is therefore simply the length of the partial derivative
coefficient vector, together with the metric, given by,
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The Lorentz transformations are therefore rotations in space-time, as they
are the transformations that leave the lengths of vectors unchanged.

Let’s look at rotations that only mix two of the 4 indices and let’s ingnore
the units for now. If the two indices are both spatial, say x and y, then we
have a standard 2d rotation,
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as
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For the ¢t and x plane, we find
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as
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with
cosh? ¢ — sinh? ¢ = 1, (1.17)
cosh ¢ = %, sinh ¢ = % (1.18)

This formula is not invariant under a galilean transformation. Let’s find
a transformation that leaves this equation invariant, by generalizing the
galilean transformation as

Lot + Ly o (1.19)
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Partial derivatives are then given by,
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Inserting this into eq.(?7), leads to,

?yE., +l 12Ett - l22l12E7 (1.25)
—C%(z VB + 1?1 Ey — 2151, vE_;) = 0. (1.26)
And therefore,
1222—2—22[221 =1 (1.27)
I Z—jﬁn = —Z—j (1.28)
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If we assume,
lyg =1y,

then, after a straighforward calculation,

lyy = 7
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with
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For the transformation we find,

P = Alt— o)

T = ~v(x—ot).
If we write t and x in the same units by using c,

v
t = t— —
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T = 7(—9015 + ).

c
It follows that
~ = cosh ¢.
Efy = sinh ¢.
c
Changing the above assumption to,
lyg = alyy,

SPECIAL RELATIVITY

(1.37)

(1.38)

(1.41)

for a constant «a, just amounts to a redefinition of v in eq.(77?).

We see, that space and time are not treated on an equal footing, since for
space we can choose the angle ¢ freely, whereas the angle between a space
and the time component is given by the relative movement of the inertial
systems. If space and time were treated on an equal footing, then the matrix
of the Lorentz transformation would only have entries depending on ¢, and

not on v.



The above equations are dependend on ¢, which is taken to be the speed
of light in a vacuum. The Maxwell’s equation is then only Lorentz invariant,
if ¢ refers to the speed of light in a vacuum there as well. Every other wave
equation, say Maxwell’s equation for light travelling in a medium with ¢’ # ¢,
or sound waves and so on, are all not Lorentz invariant.

Here, time is not a paramater, that parameterizes the movement of one
coordinate system relative to the other, but a coordinate, and hence is rep-
resented by a coordinate axis. The axis corresponding to ¢, is given, in the
coordinate system ¢, x, by & = 0, and hence by,

x = vt. (1.42)

The 7 axis is given by ¢ = 0, hence
c
= —t. 1.43
r=© (1.43)

Let’s look at,
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= ct(l—g)—:z(l—c—2) = c*t* —x°. (1.46)

Let’s just transform the spacial part, with

I =t (1.47)
T = lqr+lyy, (1.48)
= ll2x _'_ l22y. (149)

Partial derivatives are then given by,
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and
0 or 0 0y 0 0 0
o= 22y Y S, 1.52
or ~ oror “ozoy Moz gy (1.52)
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- = = 4 7 - 4 1.53
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Inserting this into eq.(?7), leads to,
P By + l212Egg + 21y, Ly Egy (1.54)
129 By + Py By + 2l 1y B = 0. (1.55)
And therefore,
l211 + l221 = 1 (1.56)
5212 + l222 = 1, (1.57)
Il + 15l = 0. (1.58)
This is satisfied by,
l;;, = lyy = coso, (1.59)
liy, = —ly =sing. (1.60)

The coefficients therefore just transform under a rotation in the x — y plane.

1.1 Proper Time

The length of a 4-vetor is the same for all observers, since the Lorentz trans-
formation is a rotation in space-time. Therefore, the difference of two 4-
vectors is invariant as well. Let’s write for a very small difference,

ds = +/(dt)? — (dz)? — (dy)? — (d2)2. (1.61)

The length of a 4-vector can be positive, zero or negative. Due to the invari-
ance of ds, it it is, say, positive, then it is positive for all oberservers. The
same is true foer z zero 4-vector and for a negative one. If,

dr =0 dy=0 dz=0, (1.62)
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then,
ds = dt. (1.63)

That is why a 4-vector with positive length is called time like. Let’s rename
ds for timelike vectors as d7 and call it the proper time.

If we use d7 to paramterize the curve of a particle in space-time, then we
can define invariant four velocities and four accelerations, by,

d
vzﬁ, (1.64)
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Both these quantities are 4-vectors, as the numerator is given by the dif-
ference of two 4-vectors and hence transforms like a 4-vector and as the
denominator is invariant.

If we parametrize the movement of a particle with the proper time, then,
due to eq.(??) and eq.(?7?), it is the time as measured by a clock that moves
together with the particle.

Measurement of distance can be reduced to time measurement, hence
special relativity is about how you measure time.

) (1.66)



