
3 Elements of contact mechanics

3.1. Introduction There is a group of machine components whose functioning depends upon

rolling and sliding motion along surfaces while under load. Both surfaces
are usually convex, so that the area through which the load is transferred is
very small, even after some surface deformation, and the pressures and local

stresses are very high. Unless logically designed for the load and life
expected of it, the component may fail by early general wear or by local

fatigue failure. The magnitude of the damage is a function of the materials
and by the intensity of the applied load or pressure, as well as the surface

finish, lubrication and relative motion.

The intensity of the load can be determined from equations which are

functions of the geometry of the surfaces, essentially the radii of curvature,
and the elastic constants of the materials. Large radii and smaller moduli of
elasticity, give larger contact areas and lower pressures. Careful alignment,

smoother surfaces, and higher strength and oil viscosity minimize failures.

In this chapter, presentation and discussion of contact mechanics is

confined, for reasons of space, to the most technically important topics.
However, a far more comprehensive treatment of contact problems in a

form suitable for the practising engineer is given in the ESDU tribology

series. The following items are recommended:

ESDU-78035, Contact phenomena I; stresses, deflections and contact
dimensions for normally loaded unlubricated elastic

components;
ESDU 84017, Contact phenomena II; stress fields and failure criteria in

concentrated elastic contacts under combined normal and

tangential loading;
ESDU -85007, Contact phenomena III; calculation of individual stress

components in concentrated elastic contacts under com-

bined normal and tangential loading.
Although a fairly comprehensive treatment of thermal effects in surface

contacts is given here it is appropriate, however, to mention the ESDU
tribology series where thermal aspects of bearings, treated as a system are
presented, and network theory is employed in an easy to follow step-by-step
procedure. The following items are esentially recommended for the
practising designer:
ESDU-78026, Equilibrium temperatures in self-contained bearing

assemblies;
Part I - outline of method of estimation;
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ESDU-78027, Part II first approximation to temperature rise;
ESDU-78028, Part III estimation of thermal resistance of an assembly;
ESDU 78029, Part IV - heat transfer coefficient and joint conductance.

Throughout this chapter, references are made to the appropriate ESDU
item number, in order to supplement information on contact mechanics
and thermal effects, offer alternative approach or simply to point out the

source of technical data required to carry out certain analysis.

3.2. Concentrated and The theory of contact stresses and deformations is one of the more difficult

distributed forces on topics in the theory of elasticity. The usual approach is to start with forces

plane surfaces applied to the plane boundaries of semi-infinite bodies, i.e. bodies which
extend indefinitely in all directions on one side of the plane. Theoretically
this means that the stresses which radiate away from the applied forces and

die out rapidly are unaffected by any stresses from reaction forces or

moments elsewhere on the body.

A concentrated force acts at point 0 in case 1 of Table 3.1. At any point Q
there is a resultant stress q on a plane perpendicular to 0Z, directed

through 0 and of magnitude inversely proportional to (r
2
4-z

2
), or the

Table 3.1

Loading case

1. Point

2. Line

3. Knife edge or pivot

4. Uniform distributed load p
over circle of radius a

5. Rigid cylinder (£j >£2)
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square of the distance OQ from the point of load application. This is an
indication of the rate at which stresses die out. The deflection of the surface
at a radial distance r is inversely proportional to r, and hence, is a hyperbola
asymptotic to axes OR and OZ. At the origin, the stresses and deflections

theoretically become infinite, and one must imagine the material near 0 cut
out, say, by a small hemispherical surface to which are applied distributed

forces that are statistically equivalent to the concentrated force P. Such a

surface is obtained by the yielding of the material.

An analogous case is that of concentrated loading along a line of length /

(case 2). Here, the force is P./l per unit length of the line. The result is a
normal stress directed through the origin and inversely proportional to the
first power of distance to the load, not fading out as rapidly. Again, the

stress approaches infinite values near the load. Yielding, followed by work-
hardening, may limit the damage. Stresses in a knife or wedge, which might
be used to apply the foregoing load, are given under case 3. The solution for

case 2 is obtained when 2y.=n, or when the wedge becomes a plane.

In the deflection equation of case 1, we may substitute for the force P, an

expression that is the product of a pressure p, and an elemental area, such as
the shaded area in Fig. 3.1. This gives a deflection at any point, M, on the

surface at a distance r = s away from the element, namelyFigure 3.1

where v is the Poisson ratio. The total deflection at M is the superposition

or integration over the loaded area of all the elemental deflections, namely

where 77 is an elastic constant (1 —v
2
)/£. If the pressure is considered

uniform, as from a fluid, and the loaded area is a circle, the resulting
deflections, in terms of elliptic integrals, are given by two equations, one for
M outside the circle and one for M inside the circle. The deflections at the

centre are given under case 4 of Table 3.1. The stresses are also obtained by

a superposition of elemental stresses for point loading. Shear stress is at a

maximum below the surface.
If a rod in the form of a punch, die or structural column is pressed against

the surface of a relatively soft material, i.e. one with a modulus of elasticity
much less than that of the rod, the rod may be considered rigid, and the
distribution of deflection is initially known. For a circular section, with
deflection w constant over the circle, the results are listed in case 5. The

pressure p is least at the centre, where it is 0.5pavg, and it is infinite at the

edges. The resultant yielding at the edges is local and has little effect on the

general distribution of pressure. For a given total load, the deflection is

inversely proportional to the radius of the circle.
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3.3. Contact between When two elastic bodies with convex surfaces, or one convex and one plane

two elastic bodies in the surface, or one convex and one concave surface, are brought together in

form of spheres point or line contact and then loaded, local deformation will occur, and the
point or line will enlarge into a surface of contact. In general, its area is

bounded by an ellipse, which becomes a circle when the contacting bodies

are spheres, and a narrow rectangle when they are cylinders with parallel

axes. These cases differ from those of the preceding section in that there are

two elastic members, and the pressure between them must be determined

from their geometry and elastic properties.
The solutions for deformation, area of contact, pressure distribution and

stresses at the initial point of contact were made by Hertz. They are
presented in ESDU 78035 in a form suitable for engineering application.

The maximum compressive stress, acting normal to the surface is equal and

opposite to the maximum pressure, and this is frequently called the Hertz
stress. The assumption is made that the dimensions of the contact area are

small, relative to the radii of curvature and to the overall dimensions of the

bodies. Thus the radii, though varying, may be taken as constant over the

very small arcs subtending the contact area. Also, the deflection integral
derived for a plane surface, eqn (3.1), may be used with very minor error.
This makes the stresses and their distribution the same in both contacting

bodies.
The methods of solution will be illustrated by the case of two spheres of

different material and radii R{ and R2- Figure 3.2 shows the spheres before

and after loading, with the radius a of the contact area greatly exaggerated

for clarity. Distance z = R-R cos y % K - R ( l -y
2
/2 + ---)vRy

2
2*r

2
/2R

because cosy may be expanded in series and the small angle yzzr/R. If

points M! and M2 in Fig. 3.2 fall within the contact area, their approach

distance M^M2 is

Figure 3.2

where B is a constant (1/2)(1/R1 + 1/R2). If
 one

 surface is concave, as
indicated by the dotted line in Fig. 3.2, the distance is

Zi — z2 = (
r2

/2)(l/K1 — 1/-R2) which indicates that when the contact area is
on the inside of a surface the numerical value of its radius is to be taken as
negative in all equations derived from eqn (3.1).
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The approach between two relatively distant and strain-free points, such

as Qi and Q2, consists not only of the surface effect zl + z2, but also of the

approach of Qi and Q2 relative to M t and M2, respectively, which are the

deformations w{ and w2 due to the, as yet, undetermined pressure over the

contact area. The total approach or deflection <5, with substitution from eqn

(3.1) and (3.2), is

Figure 3.3

For symmetry, the area of contact must be bounded by a circle, say of radius
a, and Fig. 3.3 is a special case of Fig. 3.1. A trial will show that eqn (3.3) will
be satisfied by a hemispherical pressure distribution over the circular area.
Thus the peak pressure at centre 0 is proportional to the radius a, or
Po = ca. Then, the scale for plotting pressure is c=p0/a. To find W j and w2 at

M in eqn (3.3), an integration, pds, must first be made along a chord GH,

which has the half-length GN = (a
2
 — r

2
 sin

2
 </>)*. The pressure varies as a

semicircle along this chord, and the integral equals the pressure scale c

times the area A under the semicircle, or

By a rotation of line GH about Mfrom </>=Oto cf) = n/2 (half of the contact

circle), the shaded area of Fig. 3.3, is covered. Doubling the integral

completes the integration in eqn (3.3), namely

Now the approach 6 of centres Q± and Q2, is independent of the particular

points M and radius r, chosen in the representation by which eqn (3.4) was

obtained. To make the equation independent of r, the two r
2
 terms must be

equal, whence it follows that the two constant terms are equal. The r
2
 terms,

equated and solved for a, yield the radius of the contact area
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The two constant terms when equated give

The integral of the pressure over the contact area is equal to the force P

by which the spheres are pressed together. This integral is the pressure

Table 3.2

Loading case

1. Spheres or sphere and plane

2. Cylindrical surfaces with parallel
axes

3. General case

/?, K, A are constants and obtained from appropriate diagrams
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scale times the volume under the hemispherical pressure plot, or

and the peak pressure has the value

Substitution of eqn (3.7) and the value of B below eqn (3.2) gives to eqns
(3.5) and (3.6) the forms shown for case 1 of Table 3.2. If both spheres have

the same elastic modulus E1=£2 = E, and the Poisson ratio is 0.30, a

simplified set of equations is obtained. With a ball on a plane surface,

R2 = x, and with a ball in a concave spherical seat, R2 is negative.

It has taken all this just to obtain the pressure distribution on the

surfaces. All stresses can now be found by the superposition or integration

of those obtained for a concentrated force acting on a semi-infinite body.

Some results are given under case 1 of Table 3.2. An unusual but not
unexpected result is that pressures, stresses and deflections are not linear
functions of load P, but rather increase at a less rapid rate than P. This is

because of the increase of the contact or supporting area as the load
increases. Pressures, stresses and deflections from several different loads

cannot be superimposed because they are non-linear with load.

3.4. Contact between Equations for cylinders with parallel axes may be derived directly, as shown

cylinders and between for spheres in Section 3.3. The contact area is a rectangle of width 2b and

bodies of general shape length /. The derivation starts with the stress for line contact (case 2 of Table
3.1). Some results are shown under case 2 of Table 3.2. Inspection of the
equations for semiwidth b, and peak pressure p0, indicates that both
increase as the square root of load P. The equations of the table, except that

given for 6, may be used for a cylinder on a plane by the substitution of

infinity for R2. The semiwidth b, for a cylinder on a plane becomes

l.l3[(P/l)(r]i + 772)^1]*- All normal stresses are compressive, with <ry and a.

equal at the surface to the contact pressure p0. Also significant is the

maximum shear stress TVZ , with a value of 0.304p0 at a depth 0.786/>.

Case 3 of Table 3.2 pictures a more general case of two bodies, each with
one major and one minor plane of curvature at the initial point of contact.
Axis Z is normal to the tangent plane XY, and thus the Z axis contains the
centres of the radii of curvature. The minimum and maximum radii for

body 1 are/?, and R\, respectively, lying in planes YjZand X{Z. For body

2, they are R2
 an

d ^2^ lying
 m

 planes Y2Z and X2Z, respectively. The angle
between the planes with the minimum radii or between those with the

maximum radii is \l/. In the case of two crossed cylinders with axes at 90°,

such as a car wheel on a rail, i// — 90° and R\ = R2 = oo. This general case was

solved by Hertz and the results may be presented in various ways. Here, two

sums (B + A) and (B — A), obtained from the geometry and defined under

case 3 of Table 3.2 are taken as the basic parameters. The area of contact is
an ellipse with a minor axis 2b and a major axis 2a. The distribution of

pressure is that of an ellipsoid built upon these axes, and the peak pressure is
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3.5. Failures of

contacting surfaces

1.5 times the average value P/nab. However, for cylinders with parallel axes,

the results are not usable in this form, and the contact area is a rectangle of
known length, not an ellipse. The principal stresses shown in the table occur

at the centre of the contact area, where they are maximum and compressive.

At the edge of the contact ellipse, the surface stresses in a radial direction

(along lines through the centre of contact) become tensile. Their magnitude

is considerably less than that of the maximum compressive stresses, e.g.
only 0.133p0 with two spheres and v=0.30 by an equation of case 1, Table
3.2, but the tensile stresses may have more significance in the initiation and

propagation of fatigue cracks. The circumferential stress is everywhere

equal to the radial stress, but of opposite sign, so there is a condition of pure

shear. With the two spheres i =0.133p0- Forces applied tangentially to the
surface, such as by friction, have a significant effect upon the nature and

location of the stresses. For example, two of the three compressive principal

stresses immediately behind the tangential force are changed into tensile
stresses. Also, the location of the maximum shear stress moves towards the

surface and may be on it when the coefficient of friction exceeds 0.10.
More information on failure criteria in contacts under combined normal

and tangential loading can be found in ESDU-84017.

There are several kinds of surface failures and they differ in action and

appearance. Indentation (yielding caused by excessive pressure), may

constitute failure in some machine components. Non-rotating but loaded

ball-bearings can be damaged in this way, particularly if vibration and

therefore inertia forces are added to dead weight and static load. This may
occur during shipment of machinery and vehicles on freight cars, or in
devices that must stand in a ready status for infrequent and short-life
operations. The phenomena is called false brinelling, named after the

indentations made in the standard Brinell hardness test.
The term, surface failure, is used here to describe a progressive loss of

quality by the surface resulting from shearing and tearing away of particles.

This may be a flat spot, as when a locked wheel slides on a rail. More

generally the deterioration in surface quality is distributed over an entire

active surface because of a combination of sliding and rolling actions, as on

gear teeth. It may occur in the presence of oil or grease, where a lubricating

film is not sufficiently developed, for complete separation of the contacting
surfaces. On dry surfaces, it may consist of a flaking of oxides. If pressures
are moderate, surface failures may not be noticeable until loose particles
develop. The surface may even become polished, with machining and

grinding marks disappearing. The generation of large amounts of particles,

may result from misalignments and unanticipated deflections, on only a

portion of the surface provided to take the entire load. This has been

observed on the teeth of gears mounted on insufficiently rigid shafts,
particularly when the gear is overhung. Rapid deterioration of surface

quality may occur from insufficient lubrication, as on cam shafts, or from

negligence in lubrication and protection from dirt.
A type of surface failure, particularly characteristic of concentrated
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contacts, consists of fatigue cracks which progress into and under the

surface, and particles which then fall out of the surface. The holes resulting

from this process are called pits or spalls. This pitting occurs on convex

surfaces, such as gear teeth, rolling element bearings and cams. It is a well-
established fact that the maximum shearing stress occurs below the surfaces
of bodies which are in contact. Hence, at one time, it was strongly held that
the crack forming a pit started at this point of maximum shear stress, then

progressed outwards. Data from pure rolling tests disclosed, however, that

the cracks commonly started at the surface and progressed only in the

presence of oil. A good penetrant, filling any fine cracks present, acted as a

hydraulic wedge. Experiments also revealed that only cracks with their lips

facing the approaching load would progress to failure.

In Fig. 3.4, a crack, 1, filled with oil, approaches the loading zone and has

its lip sealed off. As the full length of the crack comes under the load, oil in

the crack cannot escape, and high hydraulic pressure results. After repeated
occurrence of this process, high stress from stress concentration along the
root of the crack to spread by fatigue. Eventually, the crack will progress

towards the surface, favouring the most highly stressed regions. Then, a

particle will fall out, exposing a pit with the typical lines of progressive

cracking, radiating from the pointed lip. The pit may look much as though

it were moulded from a tiny sea shell, with an arrowhead point of origin. Pit

depths may vary from a few microns to about 1 mm, with lengths from two
to four times their depths.

Cracks facing away from the approaching zone of loading, such as crack
2 (Fig. 3.4), will not develop into pits. The root of the crack first reaches the
loaded area and the oil in the crack is squeezed out by the time its lip is
sealed off. A more viscous oil reduces or eliminates pitting, either by not

penetrating into fine cracks, or by forming an oil film thick enough to
prevent contact between asperities.

There are several possible causes for the initial surface cracks, which only

need to be microscopic or even submacroscopic. Machining and grinding

are known to leave fine surface cracks, either from a tearing action or from

thermal stresses. Polishing inhibits pitting, presumably by the removal of

these cracks. Along the edges of spherical and elliptical contact areas a

small tensile stress is present under static and pure-rolling conditions.
Tangential forces caused by sliding combined with rolling, as on gear teeth,

add tensile stresses to the above and to the rectangular contact area of

cylinders. Surface inclusions at the tensile areas create stress concentrations
and add to the chance that the repeated tensile stresses will initiate cracks.

Sometimes a piece that has dropped out of a pit passes through the contact

zone, making a shallow indentation probably with edge cracks. Sometimes

the breaking out of material continues rapidly in a direction away from the

arrowhead point of origin, increasing in width and length. It is then called
spalling. Spalling occurs more often in rolling-element bearings than in
gears, sometimes covering more than half the width of a bearing race.
Propagation of the crack from the surface is called a point-surface origin

mode of failure. There might be so-called inclusion-origin failure. Inclu-

Figure 3.4
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sions are non-metallic particles that are formed in, and not eliminated from,

the melt in the refining process. They may be formed during the

deoxidization of steel or by a reaction with the refractory of the container.

The inclusion does not bond with the metal, so that essentially a cavity is

present with a concentration of stress. The usual way to detect inclusions is
by a magnetic particle method. A crack, starting at the inclusion, may
propagate through the subsurface region for some distance, or the crack
may head for the surface. If cracks on the surface form, further propagation

may be by hydraulic action, with a final appearance similar to that from a
point-surface origin. The damaged area is often large. It is well known that

bearings made from vacuum-melted steel, and therefore a cleaner, more

oxide-free steel, are less likely to fail and may be given higher load ratings.

There are three other types of failure which usually occur in heavily

loaded roller bearings in test rigs. Geometric stress concentration occurs at
the ends of a rectangular contact area, where the material is weaker without
side support. Slight misalignment, shaft slope or taper error will move much
of the load to one of the ends. In peeling, fatigue cracks propagate over large

areas but at depths of 0.005 to 0.01 mm. This has been attributed to loss of

hydrodynamic oil film, particularly when the surface finish has many

asperities which are greater than the film thickness under the conditions of

service. Subcase fatigue occurs on carburized elements where the loads are

heavy, the core is weak and the case is thin, relative to the radii of curvature

in contact. Cracks initiate and propagate below the effective case depth, and

cracks break through to the surface at several places, probably from a
crushing of the case due to lack of support.

3.6. Design values and Previous investigations, some of which are published, have not produced a

procedures common basis on which materials, properties, component configuration,

operating conditions and theory may be combined to determine dimen-

sions for a satisfactory life of concentrated contacts. The investigations
indicate that much progress is being made, and they do furnish a guide to

conditions and changes for improvement. Most surface-contact com-
ponents operate satisfactorily, and their selection is often based on a
nominal Hertz pressure determined from experience with a particular
component and material, or a selection is made from the manufacturers
tables based on tests and experience with their components. The various
types of stresses, failures and their postulated causes, including those of

subsurface origin, are all closely related to the maximum contact pressure
calculated by the Hertz equations. If an allowable maximum Hertz pressure

seems large compared with other physical properties of the particular

material, it is because it is a compressive stress and the other two principal
stresses are compressive. The shear stresses and tensile stresses that may

initiate failures are much smaller. Also, the materials used are often
hardened for maximum strength. Suggestions for changes in contact-stress
components by which their load or life may be increased are:

1. larger radii or material of a lower modulus of elasticity to give larger

contact area and lower stress;
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